54 research outputs found

    Symmetric Models, Singular Cardinal Patterns, and Indiscernibles

    Get PDF
    This thesis is on the topic of set theory and in particular large cardinal axioms, singular cardinal patterns, and model theoretic principles in models of set theory without the axiom of choice (ZF). The first task is to establish a standardised setup for the technique of symmetric forcing, our main tool. This is handled in Chapter 1. Except just translating the method in terms of the forcing method we use, we expand the technique with new definitions for properties of its building blocks, that help us easily create symmetric models with a very nice property, i.e., models that satisfy the approximation lemma. Sets of ordinals in symmetric models with this property are included in some model of set theory with the axiom of choice (ZFC), a fact that enables us to partly use previous knowledge about models of ZFC in our proofs. After the methods are established, some examples are provided, of constructions whose ideas will be used later in the thesis. The first main question of this thesis comes at Chapter 2 and it concerns patterns of singular cardinals in ZF, also in connection with large cardinal axioms. When we do assume the axiom of choice, every successor cardinal is regular and only certain limit cardinals are singular, such as ℔ω. Here we show how to construct several patterns of singular and regular cardinals in ZF. Since the partial orders that are used for the constructions of Chapter 1 cannot be used to construct successive singular cardinals, we start by presenting some partial orders that will help us achieve such combinations. The techniques used here are inspired from Moti Gitik’s 1980 paper “All uncountable cardinals can be singular”, a straightforward modification of which is in the last section of this chapter. That last section also tackles the question posed by Arthur Apter “Which cardinals can become simultaneously the first measurable and first regular uncountable cardinal?”. Most of this last part is submitted for publication in a joint paper with Arthur Apter , Peter Koepke, and myself, entitled “The first measurable and first regular cardinal can simultaneously be ℔ρ+1, for any ρ”. Throughout the chapter we show that several large cardinal axioms hold in the symmetric models we produce. The second main question of this thesis is in Chapter 3 and it concerns the consistency strength of model theoretic principles for cardinals in models of ZF, in connection with large cardinal axioms in models of ZFC. The model theoretic principles we study are variations of Chang conjectures, which, when looked at in models of set theory with choice, have very large consistency strength or are even inconsistent. We found that by removing the axiom of choice their consistency strength is weakened, so they become easier to study. Inspired by the proof of the equiconsistency of the existence of the ω1-Erdös cardinal with the original Chang conjecture, we prove equiconsistencies for some variants of Chang conjectures in models of ZF with various forms of Erdös cardinals in models of ZFC. Such equiconsistency results are achieved on the one direction with symmetric forcing techniques found in Chapter 1, and on the converse direction with careful applications of theorems from core model theory. For this reason, this chapter also contains a section where the most useful ‘black boxes’ concerning the Dodd-Jensen core model are collected. More detailed summaries of the contents of this thesis can be found in the beginnings of Chapters 1, 2, and 3, and in the conclusions, Chapter 4

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<ÎșDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟹P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is Îș\kappa-distributive and F\mathcal{F} is Îș\kappa-complete. Further we observe that if VV is a model of ZF + DCÎșDC_{\kappa}, then DC<ÎșDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system ⟹P,G,F⟩\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is Îș\kappa-strategically closed and F\mathcal{F} is Îș\kappa-complete.Comment: Revised versio

    Preserving levels of projective determinacy by tree forcings

    Full text link
    We prove that various classical tree forcings -- for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing -- preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes classes are added to thin projective transitive relations by these forcings.Comment: 3 figure

    The formal verification of the ctm approach to forcing

    Full text link
    We discuss some highlights of our computer-verified proof of the construction, given a countable transitive set-model MM of ZFC\mathit{ZFC}, of generic extensions satisfying ZFC+ÂŹCH\mathit{ZFC}+\neg\mathit{CH} and ZFC+CH\mathit{ZFC}+\mathit{CH}. Moreover, let R\mathcal{R} be the set of instances of the Axiom of Replacement. We isolated a 21-element subset Ω⊆R\Omega\subseteq\mathcal{R} and defined F:R→R\mathcal{F}:\mathcal{R}\to\mathcal{R} such that for every Ω⊆R\Phi\subseteq\mathcal{R} and MM-generic GG, M⊹ZCâˆȘF“ΩâˆȘΩM\models \mathit{ZC} \cup \mathcal{F}\text{``}\Phi \cup \Omega implies M[G]⊹ZCâˆȘΊâˆȘ{ÂŹCH}M[G]\models \mathit{ZC} \cup \Phi \cup \{ \neg \mathit{CH} \}, where ZC\mathit{ZC} is Zermelo set theory with Choice. To achieve this, we worked in the proof assistant Isabelle, basing our development on the Isabelle/ZF library by L. Paulson and others.Comment: 20pp + 14pp in bibliography & appendices, 2 table

    Combinatorial properties and dependent choice in symmetric extensions based on LĂ©vy collapse

    Get PDF
    We work with symmetric extensions based on LĂ©vy collapse and extend a few results of Apter, Cody, and Koepke. We prove a conjecture of Dimitriou from her Ph.D. thesis. We also observe that if V is a model of ZFC, then DC<Îș can be preserved in the symmetric extension of V in terms of symmetric system ⟹ P, G, F⟩ , if P is Îș-distributive and F is Îș-complete. Further we observe that if ÎŽ< Îș and V is a model of ZF+ DCÎŽ, then DCÎŽ can be preserved in the symmetric extension of V in terms of symmetric system ⟹ P, G, F⟩ , if P is (ÎŽ+ 1)-strategically closed and F is Îș-complete. © 2022, The Author(s)

    Neo-liberalism, Human Security, and Pan-Africanist Ideals: Synergies and Contradictions

    Get PDF
    No Abstrac

    Stationary set preserving L-forcings and the extender algebra

    Full text link
    Wir konstruieren das Jensensche L-Forcing und nutzen dieses um die Pi_2 Konsequenzen der Theorie ZFC+BMM+"das nichtstationĂ€re Ideal auf omega_1 ist abschĂŒssig" zu studieren. Viele natĂŒrliche Konsequenzen der Theorie ZFC+MM folgen schon aus dieser schwĂ€cheren Theorie. Wir geben eine neue Charakterisierung des Axioms Dagger ("Alle Forcings welche stationĂ€re Teilmengen von omega_1 bewahren sind semiproper") in dem wir eine Klasse von L-Forcings isolieren deren Semiproperness Ă€quivalent zu Dagger ist. Wir verallgemeinern ein Resultat von Todorcevic: wir zeigen, dass Rado's Conjecture Dagger impliziert. Des weiteren studieren wir GenerizitĂ€tsiterationen im Kontext einer messbaren Woodinzahl. Mit diesem Werkzeug erhalten wir eine Verallgemeinerung des Woodinschen Sigma^2_1 Absolutheitstheorems. We review the construction of Jensen's L-forcing which we apply to study the Pi_2 consequences of the theory ZFC + BMM + "the nonstationary ideal on omega_1 is precipitous". Many natural consequences ZFC + MM follow from this weaker theory. We give a new characterization of the axiom dagger ("All stationary set preserving forcings are semiproper") by isolating a class of stationary set preserving L-forcings whose semiproperness is equivalent to dagger. This characterization is used to generalize work of Todorcevic: we show that Rado's Conjecture implies dagger. Furthermore we study genericity iterations beginning with a measurable Woodin cardinal. We obtain a generalization of Woodin's Sigma^2_1 absoluteness theorem
    • 

    corecore