371 research outputs found

    A novel cross-layer framework for large scale emergency communications

    Get PDF
    This paper explores the problem of improving coverage and capacity of large-scale communication networks in disaster-struck areas. We propose a novel integrated dynamic cross-layer distributed energy aware emergency framework, E3F, that spans large geographical areas and variable time ranges. E3F enables adaptive storage, dynamic packet scheduling and utility driven forwarding that avoids congestion and energy depletion. Our extensive experiments with realistic traces show significantly improved energy efficiency and low overheads while maintaining high success ratios for both data dissemination and query answering

    Model-based provisioning and management of adaptive distributed communication in mobile cooperative systems

    Get PDF
    Adaptation of communication is required to maintain the reliable connection and to ensure the minimum quality in collaborative activities. Within the framework of wireless environment, how can host entities be handled in the event of a sudden unexpected change in communication and reliable sources? This challenging issue is addressed in the context of Emergency rescue system carried out by mobile devices and robots during calamities or disaster. For this kind of scenario, this book proposes an adaptive middleware to support reconfigurable, reliable group communications. Here, the system structure has been viewed at two different states, a control center with high processing power and uninterrupted energy level is responsible for global task and entities like autonomous robots and firemen owning smart devices act locally in the mission. Adaptation at control center is handled by semantic modeling whereas at local entities, it is managed by a software module called communication agent (CA). Modeling follows the well-known SWRL instructions which establish the degree of importance of each communication link or component. Providing generic and scalable solutions for automated self-configuration is driven by rule-based reconfiguration policies. To perform dynamically in changing environment, a trigger mechanism should force this model to take an adaptive action in order to accomplish a certain task, for example, the group chosen in the beginning of a mission need not be the same one during the whole mission. Local entity adaptive mechanisms are handled by CA that manages internal service APIs to configure, set up, and monitors communication services and manages the internal resources to satisfy telecom service requirements

    Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    Get PDF
    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery

    Information Systems for Supporting Fire Emergency Response

    Get PDF
    Despite recent work on information systems, many first responders in emergency situations are unable to develop sufficient understanding of the situation to enable them to make good decisions. The record of the UK Fire and Rescue Service (FRS) has been particularly poor in terms of providing the information systems support to the fire fighters decision-making during their work. There is very little work on identifying the specific information needs of different types of fire fighters. Consequently, this study has two main aims. The first is to identify the information requirements of several specific members of the FRS hierarchy that lead to better Situation Awareness. The second is to identify how such information should be presented. This study was based on extensive data collected in the FRS brigades of three counties and focused on large buildings having a high-risk of fire and four key fire fighter job roles: Incident Commander, Sector Commander, Breathing Apparatus Entry Control Officer and Breathing Apparatus Wearers. The requirements elicitation process was guided by a Cognitive Task Analysis (CTA) tool: Goal Directed Information Analysis (GDIA), which was developed specifically for this study. Initially appropriate scenarios were developed. Based on the scenarios, 44 semi-structured interviews were carried out in three different elicitation phases with both novice and experienced fire fighters. Together with field observations of fire simulation and training exercises, fire and rescue related documentation; a comprehensive set of information needs of fire fighters was identified. These were validated through two different stages via 34 brainstorming sessions with the participation of a number of subject-matter experts. To explore appropriate presentation methods of information, software mock-up was developed. This mock-up is made up of several human computer interfaces, which were evaluated via 19 walkthrough and workshop sessions, involving 22 potential end-users and 14 other related experts. As a result, many of the methods used in the mock-up were confirmed as useful and appropriate and several refinements proposed. The outcomes of this study include: 1) A set of GDI Diagrams showing goal related information needs for each of the job roles with the link to their decision-making needs, 2) A series of practical recommendations suitable for designing of human computer interfaces of fire emergency response information system, 3) Human computer interface mock-ups for an information system to enhance Situation Awareness of fire fighters and 4) A conceptual architecture for the underlying information system. In addition, this study also developed an enhanced cognitive task analysis tool capable of exploring the needs of emergency first responders. This thesis contributes to our understanding of how information systems could be designed to enhance the Situation Awareness of first responders in a fire emergency. These results will be of particular interest to practicing information systems designers and developers in the FRS in the UK and to the wider academic community

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    A new proposal for trust management in wireless sensor networks based on validation

    Full text link
    [EN] Due to their many advantages, WSNs are getting more and more important in the field of monitoring and control systems. Despite their many advantages WSNs have some disadvantages that need to be solved. Trust-based networking can be applied to WSNs in order to get better their performance. In this paper, we proposed a new model for trust management between sensor nodes in a WSN based on false alarms they produced. The existence of validators in the WSN supports the node to determine if the alarm is a false positive. A communication model is proposed and its messages are described. Furthermore, we have performed several tests to validate the benefits of our proposal, measuring the energy consumed by the network and each individual node in the network in five scenarios. They showed us that not trusting all of the nodes in a WSN, can have better results in the total energy consumption of the network. However, having a high number of malicious nodes causes an increment of energy consumption in the rest of the nodesRego Mañez, A.; Gkountis, C.; García-García, L.; Lloret, J. (2017). A new proposal for trust management in wireless sensor networks based on validation. International Journal of Trust Management in Computing and Communications. 4(1):1-16. doi:10.1504/IJTMCC.2017.089588S1164

    High Performance Communication Framework for Mobile Sinks Wireless Sensor Networks

    Get PDF
    A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks
    • …
    corecore