142,124 research outputs found

    An Optimal Controller Architecture for Poset-Causal Systems

    Get PDF
    We propose a novel and natural architecture for decentralized control that is applicable whenever the underlying system has the structure of a partially ordered set (poset). This controller architecture is based on the concept of Moebius inversion for posets, and enjoys simple and appealing separation properties, since the closed-loop dynamics can be analyzed in terms of decoupled subsystems. The controller structure provides rich and interesting connections between concepts from order theory such as Moebius inversion and control-theoretic concepts such as state prediction, correction, and separability. In addition, using our earlier results on H_2-optimal decentralized control for arbitrary posets, we prove that the H_2-optimal controller in fact possesses the proposed structure, thereby establishing the optimality of the new controller architecture.Comment: 32 pages, 9 figures, submitted to IEEE Transactions on Automatic Contro

    The Pertinence of the Regionalization Project in Romania

    Get PDF
    The concept of "unified" or "homogeneous" state authority (in which the local authorities act as representatives of the central government, equivocally subordinated to its directive and control) was rejected and replaced with a dual system, in which the state and the local management act each in its own sphere of influence. However, we should not be surprised by the fact that the reality of local management partly lags behind the normative ideal. Europe is a space of decentralized local communities, the emphasis being placed on decentralization to enable the development of contacts which the hyper-centralized state would not have promoted and could not have tolerated. The decentralization is one of the ways which leads to a sort of European "normality" and that it participates in achieving this goal. Thus, the actual context is quite favourable to diminishing the role of the state, which should focus on its major functions: diplomacy, defence, monetary policy, preserving the economic macro-balance etc. those which stem directly from the national sovereignty, which only the state holds, no matter if it is a unitary or federal one

    Virtual Coordination in Collective Object Manipulation

    Get PDF
    Inspired by nature, swarm robotics aims to increase system robustness while utilizing simple agents. In this work, we present a novel approach to achieve decentralized coordination of forces during collective manipulation tasks resulting in a highly scalable, versatile, and robust solution. In this approach, each robot involved in the collective object manipulation task relies on the behavior of a cooperative ``virtual teammate\u27 in a fully decentralized architecture, regardless of the size and configuration of the real team. By regulating their actions with their corresponding virtual counterparts, robots achieve continuous pose control of the manipulated object, while eliminating the need for inter-agent communication or a leader-follower architecture. To experimentally study the scalability, versatility, and robustness of the proposed collective object manipulation algorithm, a new swarm agent, Δρ is introduced which is able to apply linear forces in any planar direction. Efficiency and effectiveness of the proposed decentralized algorithm are investigated by quantitative performance metrics of settling time, steady-state error, path efficiency, and object velocity profiles in comparison with a force-optimal centralized version that requires complete information. Employing impedance control during manipulation of an object provides a mean to control its dynamic interactions with the environment. The proposed decentralized algorithm is extended to achieve a desired multi-dimensional impedance behavior of the object during a collective manipulation without inter-agent communication. The proposed algorithm extension is built upon the concept of ``virtual coordination\u27 which demands every agent to locally coordinate with one virtual teammate. Since the real population of the team is unknown to the agents, the resultant force applied to the manipulated object would be directly scaled with the team population. Although this scaling effect proves useful during position control of the object, it leads to a deviation from the desired dynamic response when employed in an impedance control scheme. To minimize such deviations, a gradient descent algorithm is implemented to determine a scaling parameter defined on the control action. The simulation results of a multi-robot system with different populations and formations verify the effectiveness of the proposed method in both generating the desired impedance response and estimating the population of the group. Eventually, as two case studies, the introduced algorithm is used in robotic collective manipulation and human- assistance scenarios. Simulation and experimental results indicate that the proposed decentralized communication- free algorithm successfully performs collective manipulation in all tested scenarios, and matches the performance of the centralized controller for increasing number of agents, demonstrating its utility in communication- limited systems, remote environments, and access-limited objects

    Distributed Model Predictive Control of Load Frequency for Power Networks

    Get PDF
    In recent years, there has been an increase of interest in smart grid concept, to adapt the power grid to improve the reliability, efficiency and economics of the electricity production and distribution. One of the generator side problem in this is to meet the power requirement while not wasting unnecessary power, thus keeping the cost down, which must be done while the frequency is kept in a suitable range that will not damage any equipment connected to the power grid. It would theoretically be most logical to have a centralized controller that gathers the full networks data, calculates the control signals and adjusts the generators. However in practice this is not practical, mostly due to distance. The transmission of sensor data to the controller and the transmission of control signals to the generators would have to travel far, thus taking up to much time before the generators could act. This paper presents a distributed model predictive control based method to control the frequency of the power network. First, an augmented matrix model predictive controller is introduced and implemented on a two homogeneous subsystems network. Later the control method is changed to a state space model predictive controller and is then utilized on a four heterogeneous subsystems network. This controller implementation also includes state observers by Kalman filtering, constraints handler utilizing quadratic programming, and different connection topology setups to observe how the connectivity affects the outcome of the system. The effectiveness of the proposed distributed control method was compared against the corresponding centralized and decentralized controller implementation results. It is also compared to other control algorithms, specifically, an iterative gradient method, and a model predictive controller generated by the MATLAB MPC Toolbox. The results show that the usage of a distributed setup improves the outcome compared to the decentralized case, whilst keeping a more convenient setup than the centralized case. It it also shown that the level of connectivity for a chosen network topology matters for the outcome of the system, the results are improved when more connections exists
    corecore