5,007 research outputs found

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary

    Formal logic: Classical problems and proofs

    Get PDF
    Not focusing on the history of classical logic, this book provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematical logic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, mathematical, and computational

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201
    • …
    corecore