5,077 research outputs found

    A neural circuit for navigation inspired by C. elegans Chemotaxis

    Full text link
    We develop an artificial neural circuit for contour tracking and navigation inspired by the chemotaxis of the nematode Caenorhabditis elegans. In order to harness the computational advantages spiking neural networks promise over their non-spiking counterparts, we develop a network comprising 7-spiking neurons with non-plastic synapses which we show is extremely robust in tracking a range of concentrations. Our worm uses information regarding local temporal gradients in sodium chloride concentration to decide the instantaneous path for foraging, exploration and tracking. A key neuron pair in the C. elegans chemotaxis network is the ASEL & ASER neuron pair, which capture the gradient of concentration sensed by the worm in their graded membrane potentials. The primary sensory neurons for our network are a pair of artificial spiking neurons that function as gradient detectors whose design is adapted from a computational model of the ASE neuron pair in C. elegans. Simulations show that our worm is able to detect the set-point with approximately four times higher probability than the optimal memoryless Levy foraging model. We also show that our spiking neural network is much more efficient and noise-resilient while navigating and tracking a contour, as compared to an equivalent non-spiking network. We demonstrate that our model is extremely robust to noise and with slight modifications can be used for other practical applications such as obstacle avoidance. Our network model could also be extended for use in three-dimensional contour tracking or obstacle avoidance

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Hardware-Amenable Structural Learning for Spike-based Pattern Classification using a Simple Model of Active Dendrites

    Full text link
    This paper presents a spike-based model which employs neurons with functionally distinct dendritic compartments for classifying high dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron a capacity to perform a large number of input-output mappings. The model utilizes sparse synaptic connectivity; where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems and its performance is compared against that achieved using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) techniques. Our proposed method attains comparable performance while utilizing 10 to 50% less computational resources than the other reported techniques.Comment: Accepted for publication in Neural Computatio

    The impact of spike timing variability on the signal-encoding performance of neural spiking models

    Get PDF
    It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit information in the form of discrete spike trains. In this study, we employ a signal estimation paradigm to determine how variability in spike timing affects encoding of random time-varying signals. We assess this for two types of spiking models: an integrate-and-fire model with random threshold and a more biophysically realistic stochastic ion channel model. Using the coding fraction and mutual information as information-theoretic measures, we quantify the efficacy of optimal linear decoding of random inputs from the model outputs and study the relationship between efficacy and variability in the output spike train. Our findings suggest that variability does not necessarily hinder signal decoding for the biophysically plausible encoders examined and that the functional role of spiking variability depends intimately on the nature of the encoder and the signal processing task; variability can either enhance or impede decoding performance
    • …
    corecore