1,623 research outputs found

    Challenges in computational lower bounds

    Full text link
    We draw two incomplete, biased maps of challenges in computational complexity lower bounds

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:Anβ†’{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)∈An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (βˆ’1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,mβˆ’1}n\{0,...,m-1\}^n with the degree in each variable at most mβˆ’1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(mβˆ’2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,mβˆ’1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}nΓ—{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Smaller ACC0 Circuits for Symmetric Functions

    Get PDF
    What is the power of constant-depth circuits with MODmMOD_m gates, that can count modulo mm? Can they efficiently compute MAJORITY and other symmetric functions? When mm is a constant prime power, the answer is well understood: Razborov and Smolensky proved in the 1980s that MAJORITY and MODmMOD_m require super-polynomial-size MODqMOD_q circuits, where qq is any prime power not dividing mm. However, relatively little is known about the power of MODmMOD_m circuits for non-prime-power mm. For example, it is still open whether every problem in EXPEXP can be computed by depth-33 circuits of polynomial size and only MOD6MOD_6 gates. We shed some light on the difficulty of proving lower bounds for MODmMOD_m circuits, by giving new upper bounds. We construct MODmMOD_m circuits computing symmetric functions with non-prime power mm, with size-depth tradeoffs that beat the longstanding lower bounds for AC0[m]AC^0[m] circuits for prime power mm. Our size-depth tradeoff circuits have essentially optimal dependence on mm and dd in the exponent, under a natural circuit complexity hypothesis. For example, we show for every Ρ>0\varepsilon > 0 that every symmetric function can be computed with depth-3 MODmMOD_m circuits of exp⁑(O(nΡ))\exp(O(n^{\varepsilon})) size, for a constant mm depending only on Ρ>0\varepsilon > 0. That is, depth-33 CC0CC^0 circuits can compute any symmetric function in \emph{subexponential} size. This demonstrates a significant difference in the power of depth-33 CC0CC^0 circuits, compared to other models: for certain symmetric functions, depth-33 AC0AC^0 circuits require 2Ω(n)2^{\Omega(\sqrt{n})} size [H{\aa}stad 1986], and depth-33 AC0[pk]AC^0[p^k] circuits (for fixed prime power pkp^k) require 2Ω(n1/6)2^{\Omega(n^{1/6})} size [Smolensky 1987]. Even for depth-two MODp∘MODmMOD_p \circ MOD_m circuits, 2Ω(n)2^{\Omega(n)} lower bounds were known [Barrington Straubing Th\'erien 1990].Comment: 15 pages; abstract edited to fit arXiv requirement
    • …
    corecore