102 research outputs found

    Upward and Orthogonal Planarity are W[1]-hard Parameterized by Treewidth

    Full text link
    Upward planarity testing and Rectilinear planarity testing are central problems in graph drawing. It is known that they are both NP-complete, but XP when parameterized by treewidth. In this paper we show that these two problems are W[1]-hard parameterized by treewidth, which answers open problems posed in two earlier papers. The key step in our proof is an analysis of the All-or-Nothing Flow problem, a generalization of which was used as an intermediate step in the NP-completeness proof for both planarity testing problems. We prove that the flow problem is W[1]-hard parameterized by treewidth on planar graphs, and that the existing chain of reductions to the planarity testing problems can be adapted without blowing up the treewidth. Our reductions also show that the known nO(tw)n^{O(tw)}-time algorithms cannot be improved to run in time no(tw)n^{o(tw)} unless ETH fails.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Graph Planarity Testing with Hierarchical Embedding Constraints

    Full text link
    Hierarchical embedding constraints define a set of allowed cyclic orders for the edges incident to the vertices of a graph. These constraints are expressed in terms of FPQ-trees. FPQ-trees are a variant of PQ-trees that includes F-nodes in addition to P- and to Q-nodes. An F-node represents a permutation that is fixed, i.e., it cannot be reversed. Let GG be a graph such that every vertex of GG is equipped with a set of FPQ-trees encoding hierarchical embedding constraints for its incident edges. We study the problem of testing whether GG admits a planar embedding such that, for each vertex vv of GG, the cyclic order of the edges incident to vv is described by at least one of the FPQ-trees associated with~vv. We prove that the problem is fixed-parameter tractable for biconnected graphs, where the parameters are the treewidth of GG and the number of FPQ-trees associated with every vertex of GG. We also show that the problem is NP-complete if parameterized by the number of FPQ-trees only, and W[1]-hard if parameterized by the treewidth only. Besides being interesting on its own right, the study of planarity testing with hierarchical embedding constraints can be used to address other planarity testing problems. In particular, we apply our techniques to the study of NodeTrix planarity testing of clustered graphs. We show that NodeTrix planarity testing with fixed sides is fixed-parameter tractable when parameterized by the size of the clusters and by the treewidth of the multi-graph obtained by collapsing the clusters to single vertices, provided that this graph is biconnected

    Multilevel Planarity

    Get PDF
    In this paper, we introduce and study multilevel planarity, a generalization of upward planarity and level planarity. Let G=(V,E)G = (V, E) be a directed graph and let :VP(Z)\ell: V \to \mathcal P(\mathbb Z) be a function that assigns a finite set of integers to each vertex. A multilevel-planar drawing of GG is a planar drawing of GG such that for each vertex vVv\in V its yy-coordinate y(v)y(v) is in (v)\ell(v), nd each edge is drawn as a strictly yy-monotone curve. We present linear-time algorithms for testing multilevel planarity of embedded graphs with a single source and of oriented cycles. Complementing these algorithmic results, we show that multilevel-planarity testing is NP-complete even in very restricted cases

    Sketched Representations and Orthogonal Planarity of Bounded Treewidth Graphs

    Full text link
    Given a planar graph GG and an integer bb, OrthogonalPlanarity is the problem of deciding whether GG admits an orthogonal drawing with at most bb bends in total. We show that OrthogonalPlanarity can be solved in polynomial time if GG has bounded treewidth. Our proof is based on an FPT algorithm whose parameters are the number of bends, the treewidth and the number of degree-2 vertices of GG. This result is based on the concept of sketched orthogonal representation that synthetically describes a family of equivalent orthogonal representations. Our approach can be extended to related problems such as HV-Planarity and FlexDraw. In particular, both OrthogonalPlanarity and HV-Planarity can be decided in O(n3logn)O(n^3 \log n) time for series-parallel graphs, which improves over the previously known O(n4)O(n^4) bounds.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019

    Embedding a graph in the grid of a surface with the minimum number of bends is NP-hard

    Get PDF
    This paper is devoted to the study of graph embeddings in the grid of non-planar surfaces. We provide an adequate model for those embeddings and we study the complexity of minimizing the number of bends. In particular, we prove that testing whether a graph admits a rectilinear (without bends) embedding essentially equivalent to a given embedding, and that given a graph, testing if there exists a surface such that the graph admits a rectilinear embedding in that surface are NP-complete problems and hence the corresponding optimization problems are NP-hard

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Upward Planar Morphs

    Full text link
    We prove that, given two topologically-equivalent upward planar straight-line drawings of an nn-vertex directed graph GG, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O(1)O(1) morphing steps if GG is a reduced planar stst-graph, O(n)O(n) morphing steps if GG is a planar stst-graph, O(n)O(n) morphing steps if GG is a reduced upward planar graph, and O(n2)O(n^2) morphing steps if GG is a general upward planar graph. Further, we show that Ω(n)\Omega(n) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an nn-vertex path.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) The current version is the extended on

    Drawing graphs for cartographic applications

    Get PDF
    Graph Drawing is a relatively young area that combines elements of graph theory, algorithms, (computational) geometry and (computational) topology. Research in this field concentrates on developing algorithms for drawing graphs while satisfying certain aesthetic criteria. These criteria are often expressed in properties like edge complexity, number of edge crossings, angular resolutions, shapes of faces or graph symmetries and in general aim at creating a drawing of a graph that conveys the information to the reader in the best possible way. Graph drawing has applications in a wide variety of areas which include cartography, VLSI design and information visualization. In this thesis we consider several graph drawing problems. The first problem we address is rectilinear cartogram construction. A cartogram, also known as value-by-area map, is a technique used by cartographers to visualize statistical data over a set of geographical regions like countries, states or counties. The regions of a cartogram are deformed such that the area of a region corresponds to a particular geographic variable. The shapes of the regions depend on the type of cartogram. We consider rectilinear cartograms of constant complexity, that is cartograms where each region is a rectilinear polygon with a constant number of vertices. Whether a cartogram is good is determined by how closely the cartogram resembles the original map and how precisely the area of its regions describe the associated values. The cartographic error is defined for each region as jAc¡Asj=As, where Ac is the area of the region in the cartogram and As is the specified area of that region, given by the geographic variable to be shown. In this thesis we consider the construction of rectilinear cartograms that have correct adjacencies of the regions and zero cartographic error. We show that any plane triangulated graph admits a rectilinear cartogram where every region has at most 40 vertices which can be constructed in O(nlogn) time. We also present experimental results that show that in practice the algorithm works significantly better than suggested by the complexity bounds. In our experiments on real-world data we were always able to construct a cartogram where the average number of vertices per region does not exceed five. Since a rectangle has four vertices, this means that most of the regions of our rectilinear car tograms are in fact rectangles. Moreover, the maximum number vertices of each region in these cartograms never exceeded ten. The second problem we address in this thesis concerns cased drawings of graphs. The vertices of a drawing are commonly marked with a disk, but differentiating between vertices and edge crossings in a dense graph can still be difficult. Edge casing is a wellknown method—used, for example, in electrical drawings, when depicting knots, and, more generally, in information visualization—to alleviate this problem and to improve the readability of a drawing. A cased drawing orders the edges of each crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. One can also envision that every edge is encased in a strip of the background color and that the casing of the upper edge covers the lower edge at the crossing. If there are no application-specific restrictions that dictate the order of the edges at each crossing, then we can in principle choose freely how to arrange them. However, certain orders will lead to a more readable drawing than others. In this thesis we formulate aesthetic criteria for a cased drawing as optimization problems and solve these problems. For most of the problems we present either a polynomial time algorithm or demonstrate that the problem is NP-hard. Finally we consider a combinatorial question in computational topology concerning three types of objects: closed curves in the plane, surfaces immersed in the plane, and surfaces embedded in space. In particular, we study casings of closed curves in the plane to decide whether these curves can be embedded as the boundaries of certain special surfaces. We show that it is NP-complete to determine whether an immersed disk is the projection of a surface embedded in space, or whether a curve is the boundary of an immersed surface in the plane that is not constrained to be a disk. However, when a casing is supplied with a self-intersecting curve, describing which component of the curve lies above and which below at each crossing, we can determine in time linear in the number of crossings whether the cased curve forms the projected boundary of a surface in space. As a related result, we show that an immersed surface with a single boundary curve that crosses itself n times has at most 2n=2 combinatorially distinct spatial embeddings and we discuss the existence of fixed-parameter tractable algorithms for related problems

    Drawing HV-Restricted Planar Graphs

    Full text link
    A strict orthogonal drawing of a graph G=(V,E)G=(V, E) in R2\mathbb{R}^2 is a drawing of GG such that each vertex is mapped to a distinct point and each edge is mapped to a horizontal or vertical line segment. A graph GG is HVHV-restricted if each of its edges is assigned a horizontal or vertical orientation. A strict orthogonal drawing of an HVHV-restricted graph GG is good if it is planar and respects the edge orientations of GG. In this paper, we give a polynomial-time algorithm to check whether a given HVHV-restricted plane graph (i.e., a planar graph with a fixed combinatorial embedding) admits a good orthogonal drawing preserving the input embedding, which settles an open question posed by Ma\v{n}uch et al. (Graph Drawing 2010). We then examine HVHV-restricted planar graphs (i.e., when the embedding is not fixed), and give a complete characterization of the HVHV-restricted biconnected outerplanar graphs that admit good orthogonal drawings.Comment: 17 pages, 9 figure

    Radial level planarity with fixed embedding

    Get PDF
    We study level planarity testing of graphs with a fixed combinatorial embedding for three different notions of combinatorial embeddings, namely the level embedding, the upward embedding and the planar embedding. These notions allow for increasing degrees of freedom in their corresponding drawings. For the fixed level embedding there are known and easy to test level planarity criteria. We use these criteria to prove an "untangling" lemma that plays a key role in a simple level planarity test for the case where only the upward embedding is fixed. This test is then adapted to the case where only the planar embedding is fixed. Further, we characterize radial upward planar embeddings, which lets us extend our results to radial level planarity. No algorithms were previously known for these problems
    corecore