17,016 research outputs found

    On the computational complexity of temporal projection and some related problems

    Get PDF
    One kind of temporal reasoning is temporal projection -the computation of the consequences for a set of events. This problem is related to a number of other temporal reasoning tasks such as story understanding, plan validation, and planning. We show that one particular simple case of temporal projection on partially ordered events turns out to be harder than previously conjectured. However, given the restrictions of this problem, planning and story understanding are easy. Additionally, we show that plan validation, one of the intended applications of temporal projection, is tractable for an even larger class of plans. The incomplete decision procedure for the temporal projection problem that has been proposed by other authors, however, fails to be complete in the case where we have shown plan validation to be tractable

    Perception of Motion and Architectural Form: Computational Relationships between Optical Flow and Perspective

    Full text link
    Perceptual geometry refers to the interdisciplinary research whose objectives focuses on study of geometry from the perspective of visual perception, and in turn, applies such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form, space and motion are among fundamental problems in vision science. In cognitive and computational models of human perception, the theories for modeling motion are treated separately from models for perception of form.Comment: 10 pages, 13 figures, submitted and accepted in DoCEIS'2012 Conference: http://www.uninova.pt/doceis/doceis12/home/home.ph

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Why Simpler Computer Simulation Models Can Be Epistemically Better for Informing Decisions

    Get PDF
    For computer simulation models to usefully inform climate risk management, uncertainties in model projections must be explored and characterized. Because doing so requires running the model many ti..

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis
    corecore