1,094 research outputs found

    On the Decidability of Connectedness Constraints in 2D and 3D Euclidean Spaces

    Get PDF
    We investigate (quantifier-free) spatial constraint languages with equality, contact and connectedness predicates as well as Boolean operations on regions, interpreted over low-dimensional Euclidean spaces. We show that the complexity of reasoning varies dramatically depending on the dimension of the space and on the type of regions considered. For example, the logic with the interior-connectedness predicate (and without contact) is undecidable over polygons or regular closed sets in the Euclidean plane, NP-complete over regular closed sets in three-dimensional Euclidean space, and ExpTime-complete over polyhedra in three-dimensional Euclidean space.Comment: Accepted for publication in the IJCAI 2011 proceeding

    Modal logic of planar polygons

    Get PDF
    We study the modal logic of the closure algebra P2P_2, generated by the set of all polygons in the Euclidean plane R2\mathbb{R}^2. We show that this logic is finitely axiomatizable, is complete with respect to the class of frames we call "crown" frames, is not first order definable, does not have the Craig interpolation property, and its validity problem is PSPACE-complete

    Qualitative constraint satisfaction problems: An extended framework with landmarks

    Full text link
    Dealing with spatial and temporal knowledge is an indispensable part of almost all aspects of human activity. The qualitative approach to spatial and temporal reasoning, known as Qualitative Spatial and Temporal Reasoning (QSTR), typically represents spatial/temporal knowledge in terms of qualitative relations (e.g., to the east of, after), and reasons with spatial/temporal knowledge by solving qualitative constraints. When formulating qualitative constraint satisfaction problems (CSPs), it is usually assumed that each variable could be "here, there and everywhere".1 Practical applications such as urban planning, however, often require a variable to take its value from a certain finite domain, i.e. it is required to be 'here or there, but not everywhere'. Entities in such a finite domain often act as reference objects and are called "landmarks" in this paper. The paper extends the classical framework of qualitative CSPs by allowing variables to take values from finite domains. The computational complexity of the consistency problem in this extended framework is examined for the five most important qualitative calculi, viz. Point Algebra, Interval Algebra, Cardinal Relation Algebra, RCC5, and RCC8. We show that all these consistency problems remain in NP and provide, under practical assumptions, efficient algorithms for solving basic constraints involving landmarks for all these calculi. © 2013 Elsevier B.V

    Dwelling on ontology - semantic reasoning over topographic maps

    Get PDF
    The thesis builds upon the hypothesis that the spatial arrangement of topographic features, such as buildings, roads and other land cover parcels, indicates how land is used. The aim is to make this kind of high-level semantic information explicit within topographic data. There is an increasing need to share and use data for a wider range of purposes, and to make data more definitive, intelligent and accessible. Unfortunately, we still encounter a gap between low-level data representations and high-level concepts that typify human qualitative spatial reasoning. The thesis adopts an ontological approach to bridge this gap and to derive functional information by using standard reasoning mechanisms offered by logic-based knowledge representation formalisms. It formulates a framework for the processes involved in interpreting land use information from topographic maps. Land use is a high-level abstract concept, but it is also an observable fact intimately tied to geography. By decomposing this relationship, the thesis correlates a one-to-one mapping between high-level conceptualisations established from human knowledge and real world entities represented in the data. Based on a middle-out approach, it develops a conceptual model that incrementally links different levels of detail, and thereby derives coarser, more meaningful descriptions from more detailed ones. The thesis verifies its proposed ideas by implementing an ontology describing the land use ‘residential area’ in the ontology editor Protégé. By asserting knowledge about high-level concepts such as types of dwellings, urban blocks and residential districts as well as individuals that link directly to topographic features stored in the database, the reasoner successfully infers instances of the defined classes. Despite current technological limitations, ontologies are a promising way forward in the manner we handle and integrate geographic data, especially with respect to how humans conceptualise geographic space

    A Logic for Choreographies

    Get PDF
    We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL), a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof system for checking validity of formulae.Comment: In Proceedings PLACES 2010, arXiv:1110.385
    corecore