1,230 research outputs found

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    Finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate partial differential equations.\ud \ud (Presented as an invited lecture under the title "Computational multiscale modelling: Fokker-Planck equations and their numerical analysis" at the Foundations of Computational Mathematics conference in Santander, Spain, 30 June - 9 July, 2005.

    Defect correction from a galerkin viewpoint

    Get PDF
    We consider the numerical solution of systems of nonlinear two point boundary value problems by Galerkin's method. An initial solution is computed with piecewise linear approximating functions and this is then improved by using higher—order piecewise polynomials to compute defect corrections. This technique, including numerical integration, is justified by typical Galerkin arguments and properties of piecewise polynomials rather than the traditional asymptotic error expansions of finite difference methods

    Sparse finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    Partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the exponential growth of computational complexity as a function of the dimension d of the problem domain, the so-called ``curse of dimension'', is exacerbated by the fact that the problem may be transport-dominated. We develop the numerical analysis of stabilized sparse tensor-product finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations, using piecewise polynomials of degree p > 0. Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. By tracking the dependence of the various constants on the dimension dd and the polynomial degree p, we show in the case of elliptic transport-dominated diffusion problems that for p > 0 the error constant exhibits exponential decay as d tends to infinity. In the general case when the characteristic form of the partial differential equation is non-negative, under a mild condition relating p to d, the error constant is shown to grow no faster than quadratically in d. In any case, the sparse stabilized finite element method exhibits an optimal rate of convergence with respect to the mesh-size, up to a factor that is polylogarithmic in the mesh-size.\ud \ud Dedicated to Henryk Wozniakowski, on the occasion of his 60th birthday
    • …
    corecore