3,281 research outputs found

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    Finite-time Convergent Gossiping

    Full text link
    Gossip algorithms are widely used in modern distributed systems, with applications ranging from sensor networks and peer-to-peer networks to mobile vehicle networks and social networks. A tremendous research effort has been devoted to analyzing and improving the asymptotic rate of convergence for gossip algorithms. In this work we study finite-time convergence of deterministic gossiping. We show that there exists a symmetric gossip algorithm that converges in finite time if and only if the number of network nodes is a power of two, while there always exists an asymmetric gossip algorithm with finite-time convergence, independent of the number of nodes. For n=2mn=2^m nodes, we prove that a fastest convergence can be reached in nm=nlog⁥2nnm=n\log_2 n node updates via symmetric gossiping. On the other hand, under asymmetric gossip among n=2m+rn=2^m+r nodes with 0≀r<2m0\leq r<2^m, it takes at least mn+2rmn+2r node updates for achieving finite-time convergence. It is also shown that the existence of finite-time convergent gossiping often imposes strong structural requirements on the underlying interaction graph. Finally, we apply our results to gossip algorithms in quantum networks, where the goal is to control the state of a quantum system via pairwise interactions. We show that finite-time convergence is never possible for such systems.Comment: IEEE/ACM Transactions on Networking, In Pres

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011

    On the Necessary Memory to Compute the Plurality in Multi-Agent Systems

    Get PDF
    We consider the Relative-Majority Problem (also known as Plurality), in which, given a multi-agent system where each agent is initially provided an input value out of a set of kk possible ones, each agent is required to eventually compute the input value with the highest frequency in the initial configuration. We consider the problem in the general Population Protocols model in which, given an underlying undirected connected graph whose nodes represent the agents, edges are selected by a globally fair scheduler. The state complexity that is required for solving the Plurality Problem (i.e., the minimum number of memory states that each agent needs to have in order to solve the problem), has been a long-standing open problem. The best protocol so far for the general multi-valued case requires polynomial memory: Salehkaleybar et al. (2015) devised a protocol that solves the problem by employing O(k2k)O(k 2^k) states per agent, and they conjectured their upper bound to be optimal. On the other hand, under the strong assumption that agents initially agree on a total ordering of the initial input values, Gasieniec et al. (2017), provided an elegant logarithmic-memory plurality protocol. In this work, we refute Salehkaleybar et al.'s conjecture, by providing a plurality protocol which employs O(k11)O(k^{11}) states per agent. Central to our result is an ordering protocol which allows to leverage on the plurality protocol by Gasieniec et al., of independent interest. We also provide a Ω(k2)\Omega(k^2)-state lower bound on the necessary memory to solve the problem, proving that the Plurality Problem cannot be solved within the mere memory necessary to encode the output.Comment: 14 pages, accepted at CIAC 201

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime
    • 

    corecore