5,148 research outputs found

    Computation of distances for regular and context-free probabilistic languages

    Get PDF
    Several mathematical distances between probabilistic languages have been investigated in the literature, motivated by applications in language modeling, computational biology, syntactic pattern matching and machine learning. In most cases, only pairs of probabilistic regular languages were considered. In this paper we extend the previous results to pairs of languages generated by a probabilistic context-free grammar and a probabilistic finite automaton.PostprintPeer reviewe

    Computation of moments for probabilistic finite-state automata

    Full text link
    [EN] The computation of moments of probabilistic finite-state automata (PFA) is researched in this article. First, the computation of moments of the length of the paths is introduced for general PFA, and then, the computation of moments of the number of times that a symbol appears in the strings generated by the PFA is described. These computations require a matrix inversion. Acyclic PFA, such as word graphs, are quite common in many practical applications. Algorithms for the efficient computation of the moments for acyclic PFA are also presented in this paper.This work has been partially supported by the Ministerio de Ciencia y Tecnologia under the grant TIN2017-91452-EXP (IBEM), by the Generalitat Valenciana under the grant PROMETE0/2019/121 (DeepPattern), and by the grant "Ayudas Fundacion BBVA a equipos de investigacion cientifica 2018" (PR[8]_HUM_C2_0087).Sánchez Peiró, JA.; Romero, V. (2020). Computation of moments for probabilistic finite-state automata. Information Sciences. 516:388-400. https://doi.org/10.1016/j.ins.2019.12.052S388400516Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C., & Haussler, D. (1994). Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research, 22(23), 5112-5120. doi:10.1093/nar/22.23.5112Álvaro, F., Sánchez, J.-A., & Benedí, J.-M. (2016). An integrated grammar-based approach for mathematical expression recognition. Pattern Recognition, 51, 135-147. doi:10.1016/j.patcog.2015.09.013Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-state transducers in speech recognition. Computer Speech & Language, 16(1), 69-88. doi:10.1006/csla.2001.0184Casacuberta, F., & Vidal, E. (2004). Machine Translation with Inferred Stochastic Finite-State Transducers. Computational Linguistics, 30(2), 205-225. doi:10.1162/089120104323093294Ortmanns, S., Ney, H., & Aubert, X. (1997). A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech & Language, 11(1), 43-72. doi:10.1006/csla.1996.0022Soule, S. (1974). Entropies of probabilistic grammars. Information and Control, 25(1), 57-74. doi:10.1016/s0019-9958(74)90799-2Justesen, J., & Larsen, K. J. (1975). On probabilistic context-free grammars that achieve capacity. Information and Control, 29(3), 268-285. doi:10.1016/s0019-9958(75)90437-4Hernando, D., Crespi, V., & Cybenko, G. (2005). Efficient Computation of the Hidden Markov Model Entropy for a Given Observation Sequence. IEEE Transactions on Information Theory, 51(7), 2681-2685. doi:10.1109/tit.2005.850223Nederhof, M.-J., & Satta, G. (2008). Computation of distances for regular and context-free probabilistic languages. Theoretical Computer Science, 395(2-3), 235-254. doi:10.1016/j.tcs.2008.01.010CORTES, C., MOHRI, M., RASTOGI, A., & RILEY, M. (2008). ON THE COMPUTATION OF THE RELATIVE ENTROPY OF PROBABILISTIC AUTOMATA. International Journal of Foundations of Computer Science, 19(01), 219-242. doi:10.1142/s0129054108005644Ilic, V. M., Stankovi, M. S., & Todorovic, B. T. (2011). Entropy Message Passing. IEEE Transactions on Information Theory, 57(1), 375-380. doi:10.1109/tit.2010.2090235Booth, T. L., & Thompson, R. A. (1973). Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers, C-22(5), 442-450. doi:10.1109/t-c.1973.223746Thompson, R. A. (1974). Determination of Probabilistic Grammars for Functionally Specified Probability-Measure Languages. IEEE Transactions on Computers, C-23(6), 603-614. doi:10.1109/t-c.1974.224001Wetherell, C. S. (1980). Probabilistic Languages: A Review and Some Open Questions. ACM Computing Surveys, 12(4), 361-379. doi:10.1145/356827.356829Sanchez, J.-A., & Benedi, J.-M. (1997). Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 1052-1055. doi:10.1109/34.615455Hutchins, S. E. (1972). Moments of string and derivation lengths of stochastic context-free grammars. Information Sciences, 4(2), 179-191. doi:10.1016/0020-0255(72)90011-4Heim, A., Sidorenko, V., & Sorger, U. (2008). Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2(4), 373-391. doi:10.3934/amc.2008.2.373Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., & Carrasco, R. C. (2005). Probabilistic finite-state machines - part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1013-1025. doi:10.1109/tpami.2005.147Sánchez, J. A., Rocha, M. A., Romero, V., & Villegas, M. (2018). On the Derivational Entropy of Left-to-Right Probabilistic Finite-State Automata and Hidden Markov Models. Computational Linguistics, 44(1), 17-37. doi:10.1162/coli_a_0030

    Entropy Message Passing

    Full text link
    The paper proposes a new message passing algorithm for cycle-free factor graphs. The proposed "entropy message passing" (EMP) algorithm may be viewed as sum-product message passing over the entropy semiring, which has previously appeared in automata theory. The primary use of EMP is to compute the entropy of a model. However, EMP can also be used to compute expressions that appear in expectation maximization and in gradient descent algorithms.Comment: 5 pages, 1 figure, to appear in IEEE Transactions on Information Theor
    corecore