1,179 research outputs found

    Efficient digital-to-analog encoding

    Get PDF
    An important issue in analog circuit design is the problem of digital-to-analog conversion, i.e., the encoding of Boolean variables into a single analog value which contains enough information to reconstruct the values of the Boolean variables. A natural question is: what is the complexity of implementing the digital-to-analog encoding function? That question was answered by Wegener (see Inform. Processing Lett., vol.60, no.1, p.49-52, 1995), who proved matching lower and upper bounds on the size of the circuit for the encoding function. In particular, it was proven that [(3n-1)/2] 2-input arithmetic gates are necessary and sufficient for implementing the encoding function of n Boolean variables. However, the proof of the upper bound is not constructive. In this paper, we present an explicit construction of a digital-to-analog encoder that is optimal in the number of 2-input arithmetic gates. In addition, we present an efficient analog-to-digital decoding algorithm. Namely, given the encoded analog value, our decoding algorithm reconstructs the original Boolean values. Our construction is suboptimal in that it uses constants of maximum size n log n bits; the nonconstructive proof uses constants of maximum size 2n+[log n] bits

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Metastability-Containing Circuits

    Get PDF
    In digital circuits, metastability can cause deteriorated signals that neither are logical 0 or logical 1, breaking the abstraction of Boolean logic. Unfortunately, any way of reading a signal from an unsynchronized clock domain or performing an analog-to-digital conversion incurs the risk of a metastable upset; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Synchronizers, the only traditional countermeasure, exponentially decrease the odds of maintained metastability over time. Trading synchronization delay for an increased probability to resolve metastability to logical 0 or 1, they do not guarantee success. We propose a fundamentally different approach: It is possible to contain metastability by fine-grained logical masking so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. At the heart of our approach lies a time- and value-discrete model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results and passes the test of reproducing Marino's impossibility results. We fully classify which functions can be computed by circuits with standard registers. Regarding masking registers, we show that they become computationally strictly more powerful with each clock cycle, resulting in a non-trivial hierarchy of computable functions

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    A taxonomy of problems with fast parallel algorithms

    Get PDF
    The class NC consists of problems solvable very fast (in time polynomial in log n) in parallel with a feasible (polynomial) number of processors. Many natural problems in NC are known; in this paper an attempt is made to identify important subclasses of NC and give interesting examples in each subclass. The notion of NC1-reducibility is introduced and used throughout (problem R is NC1-reducible to problem S if R can be solved with uniform log-depth circuits using oracles for S). Problems complete with respect to this reducibility are given for many of the subclasses of NC. A general technique, the “parallel greedy algorithm,” is identified and used to show that finding a minimum spanning forest of a graph is reducible to the graph accessibility problem and hence is in NC2 (solvable by uniform Boolean circuits of depth O(log2 n) and polynomial size). The class LOGCFL is given a new characterization in terms of circuit families. The class DET of problems reducible to integer determinants is defined and many examples given. A new problem complete for deterministic polynomial time is given, namely, finding the lexicographically first maximal clique in a graph. This paper is a revised version of S. A. Cook, (1983, in “Proceedings 1983 Intl. Found. Comut. Sci. Conf.,” Lecture Notes in Computer Science Vol. 158, pp. 78–93, Springer-Verlag, Berlin/New York)
    • …
    corecore