118 research outputs found

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Shifts of finite type with nearly full entropy

    Get PDF
    For any fixed alphabet A, the maximum topological entropy of a Z^d subshift with alphabet A is obviously log |A|. We study the class of nearest neighbor Z^d shifts of finite type which have topological entropy very close to this maximum, and show that they have many useful properties. Specifically, we prove that for any d, there exists beta_d such that for any nearest neighbor Z^d shift of finite type X with alphabet A for which log |A| - h(X) < beta_d, X has a unique measure of maximal entropy. Our values of beta_d decay polynomially (like O(d^(-17))), and we prove that the sequence must decay at least polynomially (like d^(-0.25+o(1))). We also show some other desirable properties for such X, for instance that the topological entropy of X is computable and that the unique m.m.e. is isomorphic to a Bernoulli measure. Though there are other sufficient conditions in the literature which guarantee a unique measure of maximal entropy for Z^d shifts of finite type, this is (to our knowledge) the first such condition which makes no reference to the specific adjacency rules of individual letters of the alphabet.Comment: 33 pages, accepted by Proceedings of the London Mathematical Societ

    On the zero-temperature limit of Gibbs states

    Full text link
    We exhibit Lipschitz (and hence H\"older) potentials on the full shift {0,1}N\{0,1\}^{\mathbb{N}} such that the associated Gibbs measures fail to converge as the temperature goes to zero. Thus there are "exponentially decaying" interactions on the configuration space {0,1}Z\{0,1\}^{\mathbb Z} for which the zero-temperature limit of the associated Gibbs measures does not exist. In higher dimension, namely on the configuration space {0,1}Zd\{0,1\}^{\mathbb{Z}^{d}}, d≥3d\geq3, we show that this non-convergence behavior can occur for finite-range interactions, that is, for locally constant potentials.Comment: The statement of Theorem 1.2 is more accurate and some new comment follow i
    • …
    corecore