35,926 research outputs found

    Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity

    Full text link
    Given an nn-length input signal \mbf{x}, it is well known that its Discrete Fourier Transform (DFT), \mbf{X}, can be computed in O(nlogn)O(n \log n) complexity using a Fast Fourier Transform (FFT). If the spectrum \mbf{X} is exactly kk-sparse (where k<<nk<<n), can we do better? We show that asymptotically in kk and nn, when kk is sub-linear in nn (precisely, knδk \propto n^{\delta} where 0<δ<10 < \delta <1), and the support of the non-zero DFT coefficients is uniformly random, we can exploit this sparsity in two fundamental ways (i) {\bf {sample complexity}}: we need only M=rkM=rk deterministically chosen samples of the input signal \mbf{x} (where r<4r < 4 when 0<δ<0.990 < \delta < 0.99); and (ii) {\bf {computational complexity}}: we can reliably compute the DFT \mbf{X} using O(klogk)O(k \log k) operations, where the constants in the big Oh are small and are related to the constants involved in computing a small number of DFTs of length approximately equal to the sparsity parameter kk. Our algorithm succeeds with high probability, with the probability of failure vanishing to zero asymptotically in the number of samples acquired, MM.Comment: 36 pages, 15 figures. To be presented at ISIT-2013, Istanbul Turke

    Uniform random generation of large acyclic digraphs

    Full text link
    Directed acyclic graphs are the basic representation of the structure underlying Bayesian networks, which represent multivariate probability distributions. In many practical applications, such as the reverse engineering of gene regulatory networks, not only the estimation of model parameters but the reconstruction of the structure itself is of great interest. As well as for the assessment of different structure learning algorithms in simulation studies, a uniform sample from the space of directed acyclic graphs is required to evaluate the prevalence of certain structural features. Here we analyse how to sample acyclic digraphs uniformly at random through recursive enumeration, an approach previously thought too computationally involved. Based on complexity considerations, we discuss in particular how the enumeration directly provides an exact method, which avoids the convergence issues of the alternative Markov chain methods and is actually computationally much faster. The limiting behaviour of the distribution of acyclic digraphs then allows us to sample arbitrarily large graphs. Building on the ideas of recursive enumeration based sampling we also introduce a novel hybrid Markov chain with much faster convergence than current alternatives while still being easy to adapt to various restrictions. Finally we discuss how to include such restrictions in the combinatorial enumeration and the new hybrid Markov chain method for efficient uniform sampling of the corresponding graphs.Comment: 15 pages, 2 figures. To appear in Statistics and Computin

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table

    Quantum Inference on Bayesian Networks

    Get PDF
    Performing exact inference on Bayesian networks is known to be #P-hard. Typically approximate inference techniques are used instead to sample from the distribution on query variables given the values ee of evidence variables. Classically, a single unbiased sample is obtained from a Bayesian network on nn variables with at most mm parents per node in time O(nmP(e)1)\mathcal{O}(nmP(e)^{-1}), depending critically on P(e)P(e), the probability the evidence might occur in the first place. By implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking O(n2mP(e)12)\mathcal{O}(n2^mP(e)^{-\frac12}) time per sample. We exploit the Bayesian network's graph structure to efficiently construct a quantum state, a q-sample, representing the intended classical distribution, and also to efficiently apply amplitude amplification, the source of our speedup. Thus, our speedup is notable as it is unrelativized -- we count primitive operations and require no blackbox oracle queries.Comment: 8 pages, 3 figures. Submitted to PR

    Efficient and exact sampling of simple graphs with given arbitrary degree sequence

    Get PDF
    Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or, alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-tracking or rejections. Using a central limit theorem-based reasoning, we argue, that for large N, and for degree sequences admitting many realizations, the sample weights are expected to have a lognormal distribution. As examples, we apply our algorithm to generate networks with degree sequences drawn from power-law distributions and from binomial distributions.Comment: 8 pages, 3 figure

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM
    corecore