3,551 research outputs found

    Joint Domain Based Massive Access for Small Packets Traffic of Uplink Wireless Channel

    Full text link
    The fifth generation (5G) communication scenarios such as the cellular network and the emerging machine type communications will produce massive small packets. To support massive connectivity and avoid signaling overhead caused by the transmission of those small packets, this paper proposes a novel method to improve the transmission efficiency for massive connections of wireless uplink channel. The proposed method combines compressive sensing (CS) with power domain NOMA jointly, especially neither the scheduling nor the centralized power allocation is necessary in the method. Both the analysis and simulation show that the method can support up to two or three times overloading.Comment: 6 pages, 5 figures.submitted to globecom 201

    Impact of User Mobility on Optimal Linear Receivers in Cellular Networks

    Full text link
    We consider the uplink of non-cooperative multi-cellular systems deploying multiple antenna elements at the base stations (BS), covering both the cases of conventional and very large number of antennas. Given the inevitable pilot contamination and an arbitrary path-loss for each link, we address the impact of time variation of the channel due to the relative movement between users and BS antennas, which limits system's performance even if the number antennas is increased, as shown. In particular, we propose an optimal linear receiver (OLR) maximizing the received signal-to-interference-plus-noise (SINR). Closed-form lower and upper bounds are derived as well as the deterministic equivalent of the OLR is obtained. Numerical results reveal the outperformance of the proposed OLR against known linear receivers, mostly in environments with high interference and certain user mobility, as well as that massive MIMO is preferable even in time-varying channel conditions.Comment: 3 figures, 6 pages, accepted in ICC 201
    • …
    corecore