193,566 research outputs found

    On the Complexity of Local Search for Weighted Standard Set Problems

    Full text link
    In this paper, we study the complexity of computing locally optimal solutions for weighted versions of standard set problems such as SetCover, SetPacking, and many more. For our investigation, we use the framework of PLS, as defined in Johnson et al., [JPY88]. We show that for most of these problems, computing a locally optimal solution is already PLS-complete for a simple neighborhood of size one. For the local search versions of weighted SetPacking and SetCover, we derive tight bounds for a simple neighborhood of size two. To the best of our knowledge, these are one of the very few PLS results about local search for weighted standard set problems

    On parallel versus sequential approximation

    Get PDF
    In this paper we deal with the class NCX of NP Optimization problems that are approximable within constant ratio in NC. This class is the parallel counterpart of the class APX. Our main motivation here is to reduce the study of sequential and parallel approximability to the same framework. To this aim, we first introduce a new kind of NC-reduction that preserves the relative error of the approximate solutions and show that the class NCX has {em complete} problems under this reducibility. An important subset of NCX is the class MAXSNP, we show that MAXSNP-complete problems have a threshold on the parallel approximation ratio that is, there are positive constants epsilon1epsilon_1, epsilon2epsilon_2 such that although the problem can be approximated in P within epsilon1epsilon_1 it cannot be approximated in NC within epsilon_2$, unless P=NC. This result is attained by showing that the problem of approximating the value obtained through a non-oblivious local search algorithm is P-complete, for some values of the approximation ratio. Finally, we show that approximating through non-oblivious local search is in average NC.Postprint (published version

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016
    corecore