170 research outputs found

    A full dichotomy for Holant<sup>c</sup>, inspired by quantum computation

    Get PDF
    Holant problems are a family of counting problems parameterised by sets of algebraic-complex valued constraint functions, and defined on graphs. They arise from the theory of holographic algorithms, which was originally inspired by concepts from quantum computation. Here, we employ quantum information theory to explain existing results about holant problems in a concise way and to derive two new dichotomies: one for a new family of problems, which we call Holant+^+, and, building on this, a full dichotomy for Holantc^c. These two families of holant problems assume the availability of certain unary constraint functions -- the two pinning functions in the case of Holantc^c, and four functions in the case of Holant+^+ -- and allow arbitrary sets of algebraic-complex valued constraint functions otherwise. The dichotomy for Holant+^+ also applies when inputs are restricted to instances defined on planar graphs. In proving these complexity classifications, we derive an original result about entangled quantum states.Comment: 57 pages, combines edited versions of arXiv:1702.00767 and arXiv:1704.05798 with some new result

    A complete dichotomy for complex-valued holant<sup>c</sup>

    Get PDF
    Holant problems are a family of counting problems on graphs, parametrised by sets of complex-valued functions of Boolean inputs. Holant^c denotes a subfamily of those problems, where any function set considered must contain the two unary functions pinning inputs to values 0 or 1. The complexity classification of Holant problems usually takes the form of dichotomy theorems, showing that for any set of functions in the family, the problem is either #P-hard or it can be solved in polynomial time. Previous such results include a dichotomy for real-valued Holant^c and one for Holant^c with complex symmetric functions, i.e. functions which only depend on the Hamming weight of the input. Here, we derive a dichotomy theorem for Holant^c with complex-valued, not necessarily symmetric functions. The tractable cases are the complex-valued generalisations of the tractable cases of the real-valued Holant^c dichotomy. The proof uses results from quantum information theory, particularly about entanglement. This full dichotomy for Holant^c answers a question that has been open for almost a decade.</p

    Holant Problems for Regular Graphs with Complex Edge Functions

    Get PDF
    We prove a complexity dichotomy theorem for Holant Problems on 3-regular graphs with an arbitrary complex-valued edge function. Three new techniques are introduced: (1) higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs, which allow us to prove that a pair of combinatorial gadgets in combination succeed in proving #P-hardness; and (3) algebraic symmetrization, which significantly lowers the symbolic complexity of the proof for computational complexity. With holographic reductions the classification theorem also applies to problems beyond the basic model.Comment: 19 pages, 4 figures, added proofs for full versio

    Holographic Algorithm with Matchgates Is Universal for Planar #\#CSP Over Boolean Domain

    Full text link
    We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#\#CSP) over Boolean variables into exactly three categories: (1) Polynomial-time tractable; (2) #\#P-hard for general instances, but solvable in polynomial-time over planar graphs; and (3) #\#P-hard over planar graphs. The classification applies to all sets of local, not necessarily symmetric, constraint functions on Boolean variables that take complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in category (2).Comment: 94 page

    Approximation Complexity of Complex-Weighted Degree-Two Counting Constraint Satisfaction Problems

    Get PDF
    Constraint satisfaction problems have been studied in numerous fields with practical and theoretical interests. In recent years, major breakthroughs have been made in a study of counting constraint satisfaction problems (or #CSPs). In particular, a computational complexity classification of bounded-degree #CSPs has been discovered for all degrees except for two, where the "degree" of an input instance is the maximal number of times that each input variable appears in a given set of constraints. Despite the efforts of recent studies, however, a complexity classification of degree-2 #CSPs has eluded from our understandings. This paper challenges this open problem and gives its partial solution by applying two novel proof techniques--T_{2}-constructibility and parametrized symmetrization--which are specifically designed to handle "arbitrary" constraints under randomized approximation-preserving reductions. We partition entire constraints into four sets and we classify the approximation complexity of all degree-2 #CSPs whose constraints are drawn from two of the four sets into two categories: problems computable in polynomial-time or problems that are at least as hard as #SAT. Our proof exploits a close relationship between complex-weighted degree-2 #CSPs and Holant problems, which are a natural generalization of complex-weighted #CSPs.Comment: A4, 10pt, 23 pages. This is a complete version of the paper that appeared in the Proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011), Lecture Notes in Computer Science, vol.6842, pp.122-133, Dallas, Texas, USA, August 14-16, 201

    New Planar P-time Computable Six-Vertex Models and a Complete Complexity Classification

    Full text link
    We discover new P-time computable six-vertex models on planar graphs beyond Kasteleyn's algorithm for counting planar perfect matchings. We further prove that there are no more: Together, they exhaust all P-time computable six-vertex models on planar graphs, assuming #P is not P. This leads to the following exact complexity classification: For every parameter setting in C{\mathbb C} for the six-vertex model, the partition function is either (1) computable in P-time for every graph, or (2) #P-hard for general graphs but computable in P-time for planar graphs, or (3) #P-hard even for planar graphs. The classification has an explicit criterion. The new P-time cases in (2) provably cannot be subsumed by Kasteleyn's algorithm. They are obtained by a non-local connection to #CSP, defined in terms of a "loop space". This is the first substantive advance toward a planar Holant classification with not necessarily symmetric constraints. We introduce M\"obius transformation on C{\mathbb C} as a powerful new tool in hardness proofs for counting problems.Comment: 61 pages, 16 figures. An extended abstract appears in SODA 202
    • …
    corecore