525,916 research outputs found

    Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization

    Full text link
    Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We improve upon known results and obtain tight minimax complexity estimates for various function classes

    Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

    Full text link
    We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [53]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the 'curvature' of the submodular function, and provide lower and upper bounds that refine and improve previous results [3, 16, 18, 52]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [7, 55], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.Comment: 21 pages. A shorter version appeared in Advances of NIPS-201

    On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces

    Full text link
    Deep learning has been applied to various tasks in the field of machine learning and has shown superiority to other common procedures such as kernel methods. To provide a better theoretical understanding of the reasons for its success, we discuss the performance of deep learning and other methods on a nonparametric regression problem with a Gaussian noise. Whereas existing theoretical studies of deep learning have been based mainly on mathematical theories of well-known function classes such as H\"{o}lder and Besov classes, we focus on function classes with discontinuity and sparsity, which are those naturally assumed in practice. To highlight the effectiveness of deep learning, we compare deep learning with a class of linear estimators representative of a class of shallow estimators. It is shown that the minimax risk of a linear estimator on the convex hull of a target function class does not differ from that of the original target function class. This results in the suboptimality of linear methods over a simple but non-convex function class, on which deep learning can attain nearly the minimax-optimal rate. In addition to this extreme case, we consider function classes with sparse wavelet coefficients. On these function classes, deep learning also attains the minimax rate up to log factors of the sample size, and linear methods are still suboptimal if the assumed sparsity is strong. We also point out that the parameter sharing of deep neural networks can remarkably reduce the complexity of the model in our setting.Comment: 33 page

    Spectral Norm of Symmetric Functions

    Full text link
    The spectral norm of a Boolean function f:{0,1}nβ†’{βˆ’1,1}f:\{0,1\}^n \to \{-1,1\} is the sum of the absolute values of its Fourier coefficients. This quantity provides useful upper and lower bounds on the complexity of a function in areas such as learning theory, circuit complexity, and communication complexity. In this paper, we give a combinatorial characterization for the spectral norm of symmetric functions. We show that the logarithm of the spectral norm is of the same order of magnitude as r(f)log⁑(n/r(f))r(f)\log(n/r(f)) where r(f)=max⁑{r0,r1}r(f) = \max\{r_0,r_1\}, and r0r_0 and r1r_1 are the smallest integers less than n/2n/2 such that f(x)f(x) or f(x)β‹…parity(x)f(x) \cdot parity(x) is constant for all xx with βˆ‘xi∈[r0,nβˆ’r1]\sum x_i \in [r_0, n-r_1]. We mention some applications to the decision tree and communication complexity of symmetric functions
    • …
    corecore