289 research outputs found

    Finite state verifiers with constant randomness

    Full text link
    We give a new characterization of NL\mathsf{NL} as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. It turns out that allowing two-way interaction with the prover does not change the class of verifiable languages, and that no polynomially bounded amount of randomness is useful for constant-memory computers when used as language recognizers, or public-coin verifiers. A corollary of our main result is that the class of outcome problems corresponding to O(log n)-space bounded games of incomplete information where the universal player is allowed a constant number of moves equals NL.Comment: 17 pages. An improved versio

    On the Computational Power of DNA Annealing and Ligation

    Get PDF
    In [20] it was shown that the DNA primitives of Separate, Merge, and Amplify were not sufficiently powerful to invert functions defined by circuits in linear time. Dan Boneh et al [4] show that the addition of a ligation primitive, Append, provides the missing power. The question becomes, "How powerful is ligation? Are Separate, Merge, and Amplify necessary at all?" This paper proposes to informally explore the power of annealing and ligation for DNA computation. We conclude, in fact, that annealing and ligation alone are theoretically capable of universal computation

    Infinite games with finite knowledge gaps

    Full text link
    Infinite games where several players seek to coordinate under imperfect information are deemed to be undecidable, unless the information is hierarchically ordered among the players. We identify a class of games for which joint winning strategies can be constructed effectively without restricting the direction of information flow. Instead, our condition requires that the players attain common knowledge about the actual state of the game over and over again along every play. We show that it is decidable whether a given game satisfies the condition, and prove tight complexity bounds for the strategy synthesis problem under ω\omega-regular winning conditions given by parity automata.Comment: 39 pages; 2nd revision; submitted to Information and Computatio
    • …
    corecore