5,563 research outputs found

    On the Complexity of Elementary Modal Logics

    Get PDF
    Modal logics are widely used in computer science. The complexity of modal satisfiability problems has been investigated since the 1970s, usually proving results on a case-by-case basis. We prove a very general classification for a wide class of relevant logics: Many important subclasses of modal logics can be obtained by restricting the allowed models with first-order Horn formulas. We show that the satisfiability problem for each of these logics is either NP-complete or PSPACE-hard, and exhibit a simple classification criterion. Further, we prove matching PSPACE upper bounds for many of the PSPACE-hard logics.Comment: Full version of STACS 2008 pape

    Model checking Branching-Time Properties of Multi-Pushdown Systems is Hard

    Full text link
    We address the model checking problem for shared memory concurrent programs modeled as multi-pushdown systems. We consider here boolean programs with a finite number of threads and recursive procedures. It is well-known that the model checking problem is undecidable for this class of programs. In this paper, we investigate the decidability and the complexity of this problem under the assumption of bounded context-switching defined by Qadeer and Rehof, and of phase-boundedness proposed by La Torre et al. On the model checking of such systems against temporal logics and in particular branching time logics such as the modal ÎĽ\mu-calculus or CTL has received little attention. It is known that parity games, which are closely related to the modal ÎĽ\mu-calculus, are decidable for the class of bounded-phase systems (and hence for bounded-context switching as well), but with non-elementary complexity (Seth). A natural question is whether this high complexity is inevitable and what are the ways to get around it. This paper addresses these questions and unfortunately, and somewhat surprisingly, it shows that branching model checking for MPDSs is inherently an hard problem with no easy solution. We show that parity games on MPDS under phase-bounding restriction is non-elementary. Our main result shows that model checking a kk context bounded MPDS against a simple fragment of CTL, consisting of formulas that whose temporal operators come from the set {\EF, \EX}, has a non-elementary lower bound

    Why Does Propositional Quantification Make Modal and Temporal Logics on Trees Robustly Hard?

    Full text link
    Adding propositional quantification to the modal logics K, T or S4 is known to lead to undecidability but CTL with propositional quantification under the tree semantics (tQCTL) admits a non-elementary Tower-complete satisfiability problem. We investigate the complexity of strict fragments of tQCTL as well as of the modal logic K with propositional quantification under the tree semantics. More specifically, we show that tQCTL restricted to the temporal operator EX is already Tower-hard, which is unexpected as EX can only enforce local properties. When tQCTL restricted to EX is interpreted on N-bounded trees for some N >= 2, we prove that the satisfiability problem is AExpPol-complete; AExpPol-hardness is established by reduction from a recently introduced tiling problem, instrumental for studying the model-checking problem for interval temporal logics. As consequences of our proof method, we prove Tower-hardness of tQCTL restricted to EF or to EXEF and of the well-known modal logics such as K, KD, GL, K4 and S4 with propositional quantification under a semantics based on classes of trees

    Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?

    Get PDF
    International audienceAdding propositional quantification to the modal logics K, T or S4 is known to lead to undecid-ability but CTL with propositional quantification under the tree semantics (QCTL t) admits a non-elementary Tower-complete satisfiability problem. We investigate the complexity of strict fragments of QCTL t as well as of the modal logic K with propositional quantification under the tree semantics. More specifically, we show that QCTL t restricted to the temporal operator EX is already Tower-hard, which is unexpected as EX can only enforce local properties. When QCTL t restricted to EX is interpreted on N-bounded trees for some N ≥ 2, we prove that the satisfiability problem is AExp pol-complete; AExp pol-hardness is established by reduction from a recently introduced tiling problem, instrumental for studying the model-checking problem for interval temporal logics. As consequences of our proof method, we prove Tower-hardness of QCTL t restricted to EF or to EXEF and of the well-known modal logics K, KD, GL, S4, K4 and D4, with propositional quantification under a semantics based on classes of trees

    Light Logics and the Call-by-Value Lambda Calculus

    Full text link
    The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.Comment: 28 page
    • …
    corecore