75,548 research outputs found

    Distributed Optimization of Multi-Cell Uplink Co-operation with Backhaul Constraints

    Full text link
    We address the problem of uplink co-operative reception with constraints on both backhaul bandwidth and the receiver aperture, or number of antenna signals that can be processed. The problem is cast as a network utility (weighted sum rate) maximization subject to computational complexity and architectural bandwidth sharing constraints. We show that a relaxed version of the problem is convex, and can be solved via a dual-decomposition. The proposed solution is distributed in that each cell broadcasts a set of {\em demand prices} based on the data sharing requests they receive. Given the demand prices, the algorithm determines an antenna/cell ordering and antenna-selection for each scheduled user in a cell. This algorithm, referred to as {\em LiquidMAAS}, iterates between the preceding two steps. Simulations of realistic network scenarios show that the algorithm exhibits fast convergence even for systems with large number of cells.Comment: IEEE ICC Conference, 201

    PGNME: A Domain Decomposition Algorithm for Distributed Power System Dynamic Simulation on High Performance Computing Platforms

    Get PDF
    Dynamic simulation of a large-scale electric power system involves solving a large number of differential algebraic equations (DAEs) every simulation time-step. With the ever-growing size and complexity of power grid, dynamic simulation becomes more and more time-consuming and computationally difficult using conventional sequential simulation techniques. This thesis presents a fully distributed approach intended for implementation on High Performance Computer (HPC) clusters. A novel, relaxation-based domain decomposition algorithm known as Parallel-General-Norton with Multiple-port Equivalent (PGNME) is proposed as the core technique of a two-stage decomposition approach to divide the overall dynamic simulation problem into a set of sub problems that can be solved concurrently. While the convergence property has traditionally been a concern for relaxation-based decomposition, an estimation mechanism based on multiple-port network equivalent is adopted as the preconditioner to enhance the convergence of the proposed algorithm. The algorithm is presented in detail and validated both in terms of accuracy and capabilit
    • …
    corecore