13,851 research outputs found

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Emergence of Invariance and Disentanglement in Deep Representations

    Full text link
    Using established principles from Statistics and Information Theory, we show that invariance to nuisance factors in a deep neural network is equivalent to information minimality of the learned representation, and that stacking layers and injecting noise during training naturally bias the network towards learning invariant representations. We then decompose the cross-entropy loss used during training and highlight the presence of an inherent overfitting term. We propose regularizing the loss by bounding such a term in two equivalent ways: One with a Kullbach-Leibler term, which relates to a PAC-Bayes perspective; the other using the information in the weights as a measure of complexity of a learned model, yielding a novel Information Bottleneck for the weights. Finally, we show that invariance and independence of the components of the representation learned by the network are bounded above and below by the information in the weights, and therefore are implicitly optimized during training. The theory enables us to quantify and predict sharp phase transitions between underfitting and overfitting of random labels when using our regularized loss, which we verify in experiments, and sheds light on the relation between the geometry of the loss function, invariance properties of the learned representation, and generalization error.Comment: Deep learning, neural network, representation, flat minima, information bottleneck, overfitting, generalization, sufficiency, minimality, sensitivity, information complexity, stochastic gradient descent, regularization, total correlation, PAC-Baye

    A Scale Mixture Perspective of Multiplicative Noise in Neural Networks

    Full text link
    Corrupting the input and hidden layers of deep neural networks (DNNs) with multiplicative noise, often drawn from the Bernoulli distribution (or 'dropout'), provides regularization that has significantly contributed to deep learning's success. However, understanding how multiplicative corruptions prevent overfitting has been difficult due to the complexity of a DNN's functional form. In this paper, we show that when a Gaussian prior is placed on a DNN's weights, applying multiplicative noise induces a Gaussian scale mixture, which can be reparameterized to circumvent the problematic likelihood function. Analysis can then proceed by using a type-II maximum likelihood procedure to derive a closed-form expression revealing how regularization evolves as a function of the network's weights. Results show that multiplicative noise forces weights to become either sparse or invariant to rescaling. We find our analysis has implications for model compression as it naturally reveals a weight pruning rule that starkly contrasts with the commonly used signal-to-noise ratio (SNR). While the SNR prunes weights with large variances, seeing them as noisy, our approach recognizes their robustness and retains them. We empirically demonstrate our approach has a strong advantage over the SNR heuristic and is competitive to retraining with soft targets produced from a teacher model

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware
    • …
    corecore