6,232 research outputs found

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Asymptotic Delsarte cliques in distance-regular graphs

    Get PDF
    We give a new bound on the parameter λ\lambda (number of common neighbors of a pair of adjacent vertices) in a distance-regular graph GG, improving and generalizing bounds for strongly regular graphs by Spielman (1996) and Pyber (2014). The new bound is one of the ingredients of recent progress on the complexity of testing isomorphism of strongly regular graphs (Babai, Chen, Sun, Teng, Wilmes 2013). The proof is based on a clique geometry found by Metsch (1991) under certain constraints on the parameters. We also give a simplified proof of the following asymptotic consequence of Metsch's result: if kμ=o(λ2)k\mu = o(\lambda^2) then each edge of GG belongs to a unique maximal clique of size asymptotically equal to λ\lambda, and all other cliques have size o(λ)o(\lambda). Here kk denotes the degree and μ\mu the number of common neighbors of a pair of vertices at distance 2. We point out that Metsch's cliques are "asymptotically Delsarte" when kμ=o(λ2)k\mu = o(\lambda^2), so families of distance-regular graphs with parameters satisfying kμ=o(λ2)k\mu = o(\lambda^2) are "asymptotically Delsarte-geometric."Comment: 10 page

    Quantum Fourier sampling, Code Equivalence, and the quantum security of the McEliece and Sidelnikov cryptosystems

    Full text link
    The Code Equivalence problem is that of determining whether two given linear codes are equivalent to each other up to a permutation of the coordinates. This problem has a direct reduction to a nonabelian hidden subgroup problem (HSP), suggesting a possible quantum algorithm analogous to Shor's algorithms for factoring or discrete log. However, we recently showed that in many cases of interest---including Goppa codes---solving this case of the HSP requires rich, entangled measurements. Thus, solving these cases of Code Equivalence via Fourier sampling appears to be out of reach of current families of quantum algorithms. Code equivalence is directly related to the security of McEliece-type cryptosystems in the case where the private code is known to the adversary. However, for many codes the support splitting algorithm of Sendrier provides a classical attack in this case. We revisit the claims of our previous article in the light of these classical attacks, and discuss the particular case of the Sidelnikov cryptosystem, which is based on Reed-Muller codes

    Isomorphism test for digraphs with weighted edges

    Get PDF
    Colour refinement is at the heart of all the most efficient graph isomorphism software packages. In this paper we present a method for extending the applicability of refinement algorithms to directed graphs with weighted edges. We use Traces as a reference software, but the proposed solution is easily transferrable to any other refinement-based graph isomorphism tool in the literature. We substantiate the claim that the performances of the original algorithm remain substantially unchanged by showing experiments for some classes of benchmark graphs

    Graph Isomorphism and the Lasserre Hierarchy

    Full text link
    In this paper we show lower bounds for a certain large class of algorithms solving the Graph Isomorphism problem, even on expander graph instances. Spielman [25] shows an algorithm for isomorphism of strongly regular expander graphs that runs in time exp(O(n^(1/3)) (this bound was recently improved to expf O(n^(1/5) [5]). It has since been an open question to remove the requirement that the graph be strongly regular. Recent algorithmic results show that for many problems the Lasserre hierarchy works surprisingly well when the underlying graph has expansion properties. Moreover, recent work of Atserias and Maneva [3] shows that k rounds of the Lasserre hierarchy is a generalization of the k-dimensional Weisfeiler-Lehman algorithm for Graph Isomorphism. These two facts combined make the Lasserre hierarchy a good candidate for solving graph isomorphism on expander graphs. Our main result rules out this promising direction by showing that even Omega(n) rounds of the Lasserre semidefinite program hierarchy fail to solve the Graph Isomorphism problem even on expander graphs.Comment: 22 pages, 3 figures, submitted to CC
    corecore