95,032 research outputs found

    Strong CP and Mu Problems in Theories with Gauge Mediated Supersymmetry Breaking

    Full text link
    We provide a simple solution to the μ\mu and strong CP problems in the context of gauge mediated supersymmetry breaking. The generic appearance of R symmetry in dynamical supersymmetry breaking is used to implement Peccei-Quinn symmetry. Acceptable μ\mu and BB terms as well as the large symmetry breaking scale are induced in the presence of nonrenormalizable interactions. Cosmological consequences of this scheme turn out to yield constraints on the PQ symmetry breaking scale and the number of the messenger/heavy quarks. Complexity in introducing non-R Peccei-Quinn symmetry is contrasted with the case of R symmetry.Comment: 10 pages, Revtex. Significantly modified version to apear in Phys. Rev.

    Ultrafast Dynamics of Vibrational Symmetry Breaking in a Charge-ordered Nickelate

    Get PDF
    The ability to probe symmetry breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-THz response of the model stripe compound La1.75_{1.75}Sr0.25_{0.25}NiO4_{4}, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen - as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry breaking dynamics in solids.Comment: 21 pages, 4 figures; updated version with journal re

    On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    Full text link
    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking constraints. We end with the first experimental study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark problems.Comment: To appear in the Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010

    Running of Fermion Observables in Non-Supersymmetric SO(10) Models

    Get PDF
    We investigate the complete renormalization group running of fermion observables in two different realistic non-supersymmetric models based on the gauge group SO(10)\textrm{SO}(10) with intermediate symmetry breaking for both normal and inverted neutrino mass orderings. Contrary to results of previous works, we find that the model with the more minimal Yukawa sector of the Lagrangian fails to reproduce the measured values of observables at the electroweak scale, whereas the model with the more extended Yukawa sector can do so if the neutrino masses have normal ordering. The difficulty in finding acceptable fits to measured data is a result of the added complexity from the effect of an intermediate symmetry breaking as well as tension in the value of the leptonic mixing angle θ23\theta^\ell_{23}.Comment: 15 pages, 3 figures, 4 tables. Final version published in JHE

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Quenched Computation of the Complexity of the Sherrington-Kirkpatrick Model

    Full text link
    The quenched computation of the complexity in the Sherrington-Kirkpatrick model is presented. A modified Full Replica Symmetry Breaking Ansatz is introduced in order to study the complexity dependence on the free energy. Such an Ansatz corresponds to require Becchi-Rouet-Stora-Tyutin supersymmetry. The complexity computed this way is the Legendre transform of the free energy averaged over the quenched disorder. The stability analysis shows that this complexity is inconsistent at any free energy level but the equilibirum one. The further problem of building a physically well defined solution not invariant under supersymmetry and predicting an extensive number of metastable states is also discussed.Comment: 19 pages, 13 figures. Some formulas added corrected, changes in discussion and conclusion, one figure adde
    corecore