13 research outputs found

    The Relationship between Fuzzy Reasoning and Its Temporal Characteristics for Knowledge Management

    Get PDF
    The knowledge management systems based on artificial reasoning (KMAR) tries to provide computers the capabilities of performing various intelligent tasks for which their human users resort to their knowledge and collective intelligence. There is a need for incorporating aspects of time and imprecision into knowledge management systems, considering appropriate semantic foundations. The aim of this paper is to present the FRTES, a real-time fuzzy expert system, embedded in a knowledge management system. Our expert system is a special possibilistic expert system, developed in order to focus on fuzzy knowledge.Knowledge Management, Artificial Reasoning, predictability

    On Stratified Belief Base Compilation

    Full text link

    The Relationship between Fuzzy Reasoning and its Temporal Characteristics for Knowledge Management Systems

    Get PDF
    The knowledge management systems based on artificial reasoning (KMAR) tries to provide computers the capabilities of performing various intelligent tasks for which their human users resort to their knowledge and collective intelligence. There is a need for incorporating aspects of time and imprecision into knowledge management systems, considering appropriate semantic foundations. The aim of this paper is to present the FRTES, a real-time fuzzy expert system, embedded in a knowledge management system. Our expert system is a special possibilistic expert system, developed in order to focus on fuzzy knowledge

    Cooperative Monitoring to Diagnose Multiagent Plans

    Get PDF
    Diagnosing the execution of a Multiagent Plan (MAP) means identifying and explaining action failures (i.e., actions that did not reach their expected effects). Current approaches to MAP diagnosis are substantially centralized, and assume that action failures are inde-pendent of each other. In this paper, the diagnosis of MAPs, executed in a dynamic and partially observable environment, is addressed in a fully distributed and asynchronous way; in addition, action failures are no longer assumed as independent of each other. The paper presents a novel methodology, named Cooperative Weak-Committed Moni-toring (CWCM), enabling agents to cooperate while monitoring their own actions. Coop-eration helps the agents to cope with very scarcely observable environments: what an agent cannot observe directly can be acquired from other agents. CWCM exploits nondetermin-istic action models to carry out two main tasks: detecting action failures and building trajectory-sets (i.e., structures representing the knowledge an agent has about the environ-ment in the recent past). Relying on trajectory-sets, each agent is able to explain its own action failures in terms of exogenous events that have occurred during the execution of the actions themselves. To cope with dependent failures, CWCM is coupled with a diagnostic engine that distinguishes between primary and secondary action failures. An experimental analysis demonstrates that the CWCM methodology, together with the proposed diagnostic inferences, are effective in identifying and explaining action failures even in scenarios where the system observability is significantly reduced. 1

    Knowledge compilation for online decision-making : application to the control of autonomous systems = Compilation de connaissances pour la décision en ligne : application à la conduite de systèmes autonomes

    Get PDF
    La conduite de systèmes autonomes nécessite de prendre des décisions en fonction des observations et des objectifs courants : cela implique des tâches à effectuer en ligne, avec les moyens de calcul embarqués. Cependant, il s'agit généralement de tâches combinatoires, gourmandes en temps de calcul et en espace mémoire. Réaliser ces tâches intégralement en ligne dégrade la réactivité du système ; les réaliser intégralement hors ligne, en anticipant toutes les situations possibles, nuit à son embarquabilité. Les techniques de compilation de connaissances sont susceptibles d'apporter un compromis, en déportant au maximum l'effort de calcul avant la mise en situation du système. Ces techniques consistent à traduire un problème dans un certain langage, fournissant une forme compilée de ce problème, dont la résolution est facile et la taille aussi compacte que possible. La traduction peut être très longue, mais n'est effectuée qu'une seule fois, hors ligne. Il existe de nombreux langages-cible de compilation, notamment le langage des diagrammes de décision binaires (BDDs), qui ont été utilisés avec succès dans divers domaines (model-checking, configuration, planification). L'objectif de la thèse était d'étudier l'application de la compilation de connaissances à la conduite de systèmes autonomes. Nous nous sommes intéressés à des problèmes réels de planification, qui impliquent souvent des variables continues ou à grand domaine énuméré (temps ou mémoire par exemple). Nous avons orienté notre travail vers la recherche et l'étude de langages-cible de compilation assez expressifs pour permettre de représenter de tels problèmes.Controlling autonomous systems requires to make decisions depending on current observations and objectives. This involves some tasks that must be executed online-with the embedded computational power only. However, these tasks are generally combinatory; their computation is long and requires a lot of memory space. Entirely executing them online thus compromises the system's reactivity. But entirely executing them offline, by anticipating every possible situation, can lead to a result too large to be embedded. A tradeoff can be provided by knowledge compilation techniques, which shift as much as possible of the computational effort before the system's launching. These techniques consists in a translation of a problem into some language, obtaining a compiled form of the problem, which is both easy to solve and as compact as possible. The translation step can be very long, but it is only executed once, and offline. There are numerous target compilation languages, among which the language of binary decision diagrams (BDDs), which have been successfully used in various domains of artificial intelligence, such as model-checking, configuration, or planning. The objective of the thesis was to study how knowledge compilation could be applied to the control of autonomous systems. We focused on realistic planning problems, which often involve variables with continuous domains or large enumerated domains (such as time or memory space). We oriented our work towards the search for target compilation languages expressive enough to represent such problems

    Proceedings of the Workshop on Change of Representation and Problem Reformulation

    Get PDF
    The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general
    corecore