14,235 research outputs found

    Weighted k-Server Bounds via Combinatorial Dichotomies

    Full text link
    The weighted kk-server problem is a natural generalization of the kk-server problem where each server has a different weight. We consider the problem on uniform metrics, which corresponds to a natural generalization of paging. Our main result is a doubly exponential lower bound on the competitive ratio of any deterministic online algorithm, that essentially matches the known upper bounds for the problem and closes a large and long-standing gap. The lower bound is based on relating the weighted kk-server problem to a certain combinatorial problem and proving a Ramsey-theoretic lower bound for it. This combinatorial connection also reveals several structural properties of low cost feasible solutions to serve a sequence of requests. We use this to show that the generalized Work Function Algorithm achieves an almost optimum competitive ratio, and to obtain new refined upper bounds on the competitive ratio for the case of dd different weight classes.Comment: accepted to FOCS'1

    The k-server problem with parallel requests and the compound work function algorithm

    Get PDF
    In this paper the compound work function algorithm for solving the generalized k-server problem is proposed. This problem is an online k-server problem with parallel requests where several servers can also be located on one point. In 1995 Koutsoupias and Papadimitriouhave proved that the well-known work function algorithm is competitive for the (usual) k-server problem. A proof, where a potential-like function argument is included, was given by Borodinand El-Yaniv in 1998. Unfortunately, certain techniques of these proofs cannot be applied to show that a natural generalization of the work function algorithm is competitive for the problem with parallel requests. Values of work functions, which are used by the compound work function algorithm are derived from a surrogate problem, where at most one server must be moved in servicing the request in each step. We can show that the compound work function algorithm is competitive with the same bound of the ratio as in the case of the usual problem

    The Infinite Server Problem

    Get PDF
    We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the (h,k)-server problem, in which an online algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the infinite server problem has bounded competitive ratio if and only if the (h,k)-server problem has bounded competitive ratio for some k=O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite server problem, which implies the same lower bound for the (h,k)-server problem even when k>>h and holds also for the line metric; the previous known bounds were 2.4 for general metric spaces and 2 for the line. For weighted trees and layered graphs we obtain upper bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line, which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded interval away from the original position of the servers. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing algorithms) fail even for this special case

    On Randomized Memoryless Algorithms for the Weighted kk-server Problem

    Full text link
    The weighted kk-server problem is a generalization of the kk-server problem in which the cost of moving a server of weight βi\beta_i through a distance dd is βid\beta_i\cdot d. The weighted server problem on uniform spaces models caching where caches have different write costs. We prove tight bounds on the performance of randomized memoryless algorithms for this problem on uniform metric spaces. We prove that there is an αk\alpha_k-competitive memoryless algorithm for this problem, where αk=αk12+3αk1+1\alpha_k=\alpha_{k-1}^2+3\alpha_{k-1}+1; α1=1\alpha_1=1. On the other hand we also prove that no randomized memoryless algorithm can have competitive ratio better than αk\alpha_k. To prove the upper bound of αk\alpha_k we develop a framework to bound from above the competitive ratio of any randomized memoryless algorithm for this problem. The key technical contribution is a method for working with potential functions defined implicitly as the solution of a linear system. The result is robust in the sense that a small change in the probabilities used by the algorithm results in a small change in the upper bound on the competitive ratio. The above result has two important implications. Firstly this yields an αk\alpha_k-competitive memoryless algorithm for the weighted kk-server problem on uniform spaces. This is the first competitive algorithm for k>2k>2 which is memoryless. Secondly, this helps us prove that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights, has a competitive ratio of kαkk\alpha_k.Comment: Published at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013

    Online matching on a line

    Get PDF
    We prove a lower bound ρ ≥ 9.001 for the competitive ratio of the so-called online matching problem on a line. As a consequence, the online matching problem is revealed to be strictly more difficult than the "cow problem". \u
    corecore