47,863 research outputs found

    Q Learning Behavior on Autonomous Navigation of Physical Robot

    Get PDF
    Behavior based architecture gives robot fast and reliable action. If there are many behaviors in robot, behavior coordination is needed. Subsumption architecture is behavior coordination method that give quick and robust response. Learning mechanism improve robot’s performance in handling uncertainty. Q learning is popular reinforcement learning method that has been used in robot learning because it is simple, convergent and off policy. In this paper, Q learning will be used as learning mechanism for obstacle avoidance behavior in autonomous robot navigation. Learning rate of Q learning affect robot’s performance in learning phase. As the result, Q learning algorithm is successfully implemented in a physical robot with its imperfect environment

    Neural network controller against environment: A coevolutive approach to generalize robot navigation behavior

    Get PDF
    In this paper, a new coevolutive method, called Uniform Coevolution, is introduced to learn weights of a neural network controller in autonomous robots. An evolutionary strategy is used to learn high-performance reactive behavior for navigation and collisions avoidance. The introduction of coevolutive over evolutionary strategies allows evolving the environment, to learn a general behavior able to solve the problem in different environments. Using a traditional evolutionary strategy method, without coevolution, the learning process obtains a specialized behavior. All the behaviors obtained, with/without coevolution have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on a mini-robot Khepera has been used to learn each behavior. The results show that Uniform Coevolution obtains better generalized solutions to examples-based problems.Publicad

    Q-CP: Learning Action Values for Cooperative Planning

    Get PDF
    Research on multi-robot systems has demonstrated promising results in manifold applications and domains. Still, efficiently learning an effective robot behaviors is very difficult, due to unstructured scenarios, high uncertainties, and large state dimensionality (e.g. hyper-redundant and groups of robot). To alleviate this problem, we present Q-CP a cooperative model-based reinforcement learning algorithm, which exploits action values to both (1) guide the exploration of the state space and (2) generate effective policies. Specifically, we exploit Q-learning to attack the curse-of-dimensionality in the iterations of a Monte-Carlo Tree Search. We implement and evaluate Q-CP on different stochastic cooperative (general-sum) games: (1) a simple cooperative navigation problem among 3 robots, (2) a cooperation scenario between a pair of KUKA YouBots performing hand-overs, and (3) a coordination task between two mobile robots entering a door. The obtained results show the effectiveness of Q-CP in the chosen applications, where action values drive the exploration and reduce the computational demand of the planning process while achieving good performance
    • …
    corecore