112 research outputs found

    Distributed and Lightweight Meta-heuristic Optimization method for Complex Problems

    Get PDF
    The world is becoming more prominent and more complex every day. The resources are limited and efficiently use them is one of the most requirement. Finding an Efficient and optimal solution in complex problems needs to practical methods. During the last decades, several optimization approaches have been presented that they can apply to different optimization problems, and they can achieve different performance on various problems. Different parameters can have a significant effect on the results, such as the type of search spaces. Between the main categories of optimization methods (deterministic and stochastic methods), stochastic optimization methods work more efficient on big complex problems than deterministic methods. But in highly complex problems, stochastic optimization methods also have some issues, such as execution time, convergence to local optimum, incompatible with distributed systems, and dependence on the type of search spaces. Therefore this thesis presents a distributed and lightweight metaheuristic optimization method (MICGA) for complex problems focusing on four main tracks. 1) The primary goal is to improve the execution time by MICGA. 2) The proposed method increases the stability and reliability of the results by using the multi-population strategy in the second track. 3) MICGA is compatible with distributed systems. 4) Finally, MICGA is applied to the different type of optimization problems with other kinds of search spaces (continuous, discrete and order based optimization problems). MICGA has been compared with other efficient optimization approaches. The results show the proposed work has been achieved enough improvement on the main issues of the stochastic methods that are mentioned before.Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä (deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat suoritusajat, päätyminen paikallisiin optimipisteisiin, yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus hakuavaruuden tyypistä. Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat optimointiongelmat). Työssä MICGA-menetelmää verrataan muihin tehokkaisiin optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten menetelmien pääongelmiin liittyen

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Heurísticas bioinspiradas para el problema de Floorplanning 3D térmico de dispositivos MPSoCs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 20-06-2013Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Adaptive Heterogeneous Multi-Population Cultural Algorithm

    Get PDF
    Optimization problems is a class of problems where the goal is to make a system as effective as possible. The goal of this research area is to design an algorithm to solve optimization problems effectively and efficiently. Being effective means that the algorithm should be able to find the optimal solution (or near optimal solutions), while efficiency refers to the computational effort required by the algorithm to find an optimal solution. In other words, an optimization algorithm should be able to find the optimal solution in an acceptable time. Therefore, the aim of this dissertation is to come up with a new algorithm which presents an effective as well as efficient performance. There are various kinds of algorithms proposed to deal with optimization problems. Evolutionary Algorithms (EAs) is a subset of population-based methods which are successfully applied to solve optimization problems. In this dissertation the area of evolutionary methods and specially Cultural Algorithms (CAs) are investigated. The results of this investigation reveal that there are some room for improving the existing EAs. Consequently, a number of EAs are proposed to deal with different optimization problems. The proposed EAs offer better performance compared to the state-of-the-art methods. The main contribution of this dissertation is to introduce a new architecture for optimization algorithms which is called Heterogeneous Multi-Population Cultural Algorithm (HMP-CA). The new architecture first incorporates a decomposition technique to divide the given problem into a number of sub-problems, and then it assigns the sub-problems to different local CAs to be optimized separately in parallel. In order to evaluate the proposed architecture, it is applied on numerical optimization problems. The evaluation results reveal that HMP-CA is fully effective such that it can find the optimal solution for every single run. Furthermore, HMP-CA outperforms the state-of-the-art methods by offering a more efficient performance. The proposed HMP-CA is further improved by incorporating an adaptive decomposition technique. The improved version which is called Adaptive HMP-CA (A-HMP-CA) is evaluated over large scale global optimization problems. The results of this evaluation show that HMP-CA significantly outperforms the state-of-the-art methods in terms of both effectiveness and efficiency

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Computational Design and Experimental Validation of Functional Ribonucleic Acid Nanostructures

    Get PDF
    In living cells, two major classes of ribonucleic acid (RNA) molecules can be found. The first class called the messenger RNA (mRNA) contains the genetic information that allows the ribosome to read and translate it into proteins. The second class called non-coding RNA (ncRNA), do not code for proteins and are involved with key cellular processes, such as gene expression regulation, splicing, differentiation, and development. NcRNAs fold into an ensemble of thermodynamically stable secondary structures, which will eventually lead the molecule to fold into a specific 3D structure. It is widely known that ncRNAs carry their functions via their 3D structures as well as their molecular composition. The secondary structure of ncRNAs is composed of different types of structural elements (motifs) such as stacking base pairs, internal loops, hairpin loops and pseudoknots. Pseudoknots are specifically difficult to model, are abundant in nature and known to stabilize the functional form of the molecule. Due to the diverse range of functions of ncRNAs, their computational design and analysis have numerous applications in nano-technology, therapeutics, synthetic biology, and materials engineering. The RNA design problem is to find novel RNA sequences that are predicted to fold into target structure(s) while satisfying specific qualitative characteristics and constraints. RNA design can be modeled as a combinatorial optimization problem (COP) and is known to be computationally challenging or more precisely NP-hard. Numerous algorithms to solve the RNA design problem have been developed over the past two decades, however mostly ignore pseudoknots and therefore limit application to only a slice of real-world modeling and design problems. Moreover, the few existing pseudoknot designer methods which were developed only recently, do not provide any evidence about the applicability of their proposed design methodology in biological contexts. The two objectives of this thesis are set to address these two shortcomings. First, we are interested in developing an efficient computational method for the design of RNA secondary structures including pseudoknots that show significantly improved in-silico quality characteristics than the state of the art. Second, we are interested in showing the real-world worthiness of the proposed method by validating it experimentally. More precisely, our aim is to design instances of certain types of RNA enzymes (i.e. ribozymes) and demonstrate that they are functionally active. This would likely only happen if their predicted folding matched their actual folding in the in-vitro experiments. In this thesis, we present four contributions. First, we propose a novel adaptive defect weighted sampling algorithm to efficiently solve the RNA secondary structure design problem where pseudoknots are included. We compare the performance of our design algorithm with the state of the art and show that our method generates molecules that are thermodynamically more stable and less defective than those generated by state of the art methods. Moreover, we show when the effect of fitness evaluation is decoupled from the search and optimization process, our optimization method converges faster than the non-dominated sorting genetic algorithm (NSGA II) and the ant colony optimization (ACO) algorithm do. Second, we use our algorithmic development to implement an RNA design pipeline called Enzymer and make it available as an open source package useful for wet lab practitioners and RNA bioinformaticians. Enzymer uses multiple sequence alignment (MSA) data to generate initial design templates for further optimization. Our design pipeline can then be used to re-engineer naturally occurring RNA enzymes such as ribozymes and riboswitches. Our first and second contributions are published in the RNA section of the Journal of Frontiers in Genetics. Third, we use Enzymer to reengineer three different species of pseudoknotted ribozymes: a hammerhead ribozyme from the mouse gut metagenome, a hammerhead ribozyme from Yarrowia lipolytica and a glmS ribozyme from Thermoanaerobacter tengcogensis. We designed a total of 18 ribozyme sequences and showed the 16 of them were active in-vitro. Our experimental results have been submitted to the RNA journal and strongly suggest that Enzymer is a reliable tool to design pseudoknotted ncRNAs with desired secondary structure. Finally, we propose a novel architecture for a new ribozyme-based gene regulatory network where a hammerhead ribozyme modulates expression of a reporter gene when an external stimulus IPTG is present. Our in-vivo results show expected results in 7 out of 12 cases

    Modélisation formelle des systèmes de détection d'intrusions

    Get PDF
    L’écosystème de la cybersécurité évolue en permanence en termes du nombre, de la diversité, et de la complexité des attaques. De ce fait, les outils de détection deviennent inefficaces face à certaines attaques. On distingue généralement trois types de systèmes de détection d’intrusions : détection par anomalies, détection par signatures et détection hybride. La détection par anomalies est fondée sur la caractérisation du comportement habituel du système, typiquement de manière statistique. Elle permet de détecter des attaques connues ou inconnues, mais génère aussi un très grand nombre de faux positifs. La détection par signatures permet de détecter des attaques connues en définissant des règles qui décrivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La détection hybride repose sur plusieurs méthodes de détection incluant celles sus-citées. Elle présente l’avantage d’être plus précise pendant la détection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de règles de reconnaissance d’attaques. Le nombre d’attaques potentielles étant très grand, ces bases de règles deviennent rapidement difficiles à gérer et à maintenir. De plus, l’expression de règles avec état dit stateful est particulièrement ardue pour reconnaître une séquence d’événements. Dans cette thèse, nous proposons une approche stateful basée sur les diagrammes d’état-transition algébriques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de représenter de façon graphique et modulaire une spécification, ce qui facilite la maintenance et la compréhension des règles. Nous étendons la notation ASTD avec de nouvelles fonctionnalités pour représenter des attaques complexes. Ensuite, nous spécifions plusieurs attaques avec la notation étendue et exécutons les spécifications obtenues sur des flots d’événements à l’aide d’un interpréteur pour identifier des attaques. Nous évaluons aussi les performances de l’interpréteur avec des outils industriels tels que Snort et Zeek. Puis, nous réalisons un compilateur afin de générer du code exécutable à partir d’une spécification ASTD, capable d’identifier de façon efficiente les séquences d’événements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events
    • …
    corecore