1,324 research outputs found

    On the Closedness of the Linear Image of a Closed Convex Cone

    Get PDF
    When is the linear image of a closed convex cone closed? We present very simple, and intuitive necessary conditions, which unify, and generalize seemingly disparate, classical sufficient conditions: polyhedrality of the cone, and “Slater” type conditions are necessary and sufficient, when the dual cone belongs to a class, that we call nice cones. Nice cones subsume all cones amenable to treatment by efficient optimization algorithms: for instance, polyhedral, semidefinite, and p-cones. provide similarly attractive conditions for an equivalent problem: the closedness of the sum of two closed convex cones

    Coordinate shadows of semi-definite and Euclidean distance matrices

    Get PDF
    We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We classify when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. In particular, we show that under a chordality assumption, the "minimal cones" of these problems admit combinatorial characterizations. As a byproduct, we record a striking relationship between the complexity of the general facial reduction algorithm (singularity degree) and facial exposedness of conic images under a linear mapping.Comment: 21 page

    Bad semidefinite programs: they all look the same

    Get PDF
    Conic linear programs, among them semidefinite programs, often behave pathologically: the optimal values of the primal and dual programs may differ, and may not be attained. We present a novel analysis of these pathological behaviors. We call a conic linear system Ax<=bAx <= b {\em badly behaved} if the value of supAx<=b\sup { | A x <= b } is finite but the dual program has no solution with the same value for {\em some} c.c. We describe simple and intuitive geometric characterizations of badly behaved conic linear systems. Our main motivation is the striking similarity of badly behaved semidefinite systems in the literature; we characterize such systems by certain {\em excluded matrices}, which are easy to spot in all published examples. We show how to transform semidefinite systems into a canonical form, which allows us to easily verify whether they are badly behaved. We prove several other structural results about badly behaved semidefinite systems; for example, we show that they are in NPcoNPNP \cap co-NP in the real number model of computing. As a byproduct, we prove that all linear maps that act on symmetric matrices can be brought into a canonical form; this canonical form allows us to easily check whether the image of the semidefinite cone under the given linear map is closed.Comment: For some reason, the intended changes between versions 4 and 5 did not take effect, so versions 4 and 5 are the same. So version 6 is the final version. The only difference between version 4 and version 6 is that 2 typos were fixed: in the last displayed formula on page 6, "7" was replaced by "1"; and in the 4th displayed formula on page 12 "A_1 - A_2 - A_3" was replaced by "A_3 - A_2 - A_1

    On the connection of facially exposed and nice cones

    Get PDF
    A closed convex cone K is called nice, if the set K^* + F^\perp is closed for all F faces of K, where K^* is the dual cone of K, and F^\perp is the orthogonal complement of the linear span of F. The niceness property is important for two reasons: it plays a role in the facial reduction algorithm of Borwein and Wolkowicz, and the question whether the linear image of a nice cone is closed also has a simple answer. We prove several characterizations of nice cones and show a strong connection with facial exposedness. We prove that a nice cone must be facially exposed; in reverse, facial exposedness with an added condition implies niceness. We conjecture that nice, and facially exposed cones are actually the same, and give supporting evidence

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    The convex real projective orbifolds with radial or totally geodesic ends: a survey of some partial results

    Full text link
    A real projective orbifold has a radial end if a neighborhood of the end is foliated by projective geodesics that develop into geodesics ending at a common point. It has a totally geodesic end if the end can be completed to have the totally geodesic boundary. The purpose of this paper is to announce some partial results. A real projective structure sometimes admits deformations to parameters of real projective structures. We will prove a homeomorphism between the deformation space of convex real projective structures on an orbifold O\mathcal{O} with radial or totally geodesic ends with various conditions with the union of open subspaces of strata of the corresponding subset of Hom(π1(O),PGL(n+1,R))/PGL(n+1,R). Hom(\pi_{1}(\mathcal{O}), PGL(n+1, \mathbb{R}))/PGL(n+1, \mathbb{R}). Lastly, we will talk about the openness and closedness of the properly (resp. strictly) convex real projective structures on a class of orbifold with generalized admissible ends.Comment: 36 pages, 2 figure. Corrected a few mistakes including the condition (NA) on page 22, arXiv admin note: text overlap with arXiv:1011.106

    Approximate cone factorizations and lifts of polytopes

    Full text link
    In this paper we show how to construct inner and outer convex approximations of a polytope from an approximate cone factorization of its slack matrix. This provides a robust generalization of the famous result of Yannakakis that polyhedral lifts of a polytope are controlled by (exact) nonnegative factorizations of its slack matrix. Our approximations behave well under polarity and have efficient representations using second order cones. We establish a direct relationship between the quality of the factorization and the quality of the approximations, and our results extend to generalized slack matrices that arise from a polytope contained in a polyhedron
    corecore