47 research outputs found

    Performance Analysis of Multi-Antenna Hybrid Satellite-Terrestrial Relay Networks in the Presence of Interference

    Get PDF
    Abstract—The integration of cooperative transmission into satellite networks is regarded as an effective strategy to increase the energy efficiency as well as the coverage of satellite communications. This paper investigates the performance of an amplifyand-forward (AF) hybrid satellite-terrestrial relay network (HSTRN), where the links of the two hops undergo Shadowed- Rician andRayleigh fadingdistributions, respectively.By assuming that a single antenna relay is used to assist the signal transmission between the multi-antenna satellite and multi-antenna mobile terminal, and multiple interferers corrupt both the relay and destination, we first obtain the equivalent end-to-end signal-to-interference-plus-noise ratio (SINR) of the system. Then, an approximate yet very accurate closed-form expression for the ergodic capacity of the HSTRN is derived. The analytical lower bound expressions are also obtained to efficiently evaluate the outage probability (OP) and average symbol error rate (ASER) of the system. Furthermore, the asymptotic OP and ASER expressions are developed at high signal-to-noise ratio (SNR) to reveal the achievable diversity order and array gain of the considered HSTRN. Finally, simulation results are provided to validate of the analytical results, and show the impact of various parameters on the system performance

    Error vector magnitude analysis of fading SIMO channels relying on MRC reception

    No full text
    We analytically characterize the data-aided Error Vector Magnitude (EVM) performance of a Single Input Multiple Output (SIMO) communication system relying on Maximal Ratio Combining (MRC) having either independent or correlated branches that are non-identically distributed. In particular, exact closed form expressions are derived for the EVM in -? fading and -? shadowed fading channels and these expressions are validated by simulations. The derived expressions are expressed in terms of Lauricella’s function of the fourth kind F(N) D (.), which can be easily computed. Furthermore, we have simplified the derived expressions for various special cases such as independent and identically distributed branches, Rayleigh fading, Nakagamim fading and -? fading. Additionally, a parametric study of the EVM performance of the wireless system is presented

    On the secrecy performance of land mobile satellite communication systems

    Get PDF
    In this paper, we investigate the secrecy performance against eavesdropping of a land mobile satellite (LMS) system, where the satellite employs the spot beam technique, and both the terrestrial user and eavesdropper are equipped with multiple antennas and utilize maximal ratio combining (MRC) to receive the confidential message. Specifically, in terms of the availability of the eavesdropper’s CSI at the satellite, we consider both passive (Scenario I) and active (Scenario II) eavesdropping. For Scenario I where the eavesdropper’s channel state information (CSI) is unknown to the satellite, closed-form expressions for the probability of non-zero secrecy capacity and secrecy outage probability are derived. Furthermore, expressions for the asymptotic secrecy outage probability are also presented to reveal the secrecy diversity order and array gain of the considered system. For Scenario II where the eavesdropper’s CSI is available at the satellite, novel expressions for the exact and asymptotic average secrecy capacity are obtained. Based on a simple asymptotic formula, we can characterize the high signalto- noise ratio (SNR) slope and high SNR power offset of the LMS systems. Finally, simulations are provided to validate our theoretical analysis and show the effect of different parameters on the system performance

    Secure Rate-Splitting Multiple Access Transmissions in LMS Systems

    Full text link
    This letter investigates the secure delivery performance of the rate-splitting multiple access scheme in land mobile satellite (LMS) systems, considering that the private messages intended by a terminal can be eavesdropped by any others from the broadcast signals. Specifically, the considered system has an N-antenna satellite and numerous single-antenna land users. Maximum ratio transmission (MRT) and matched-filtering (MF) precoding techniques are adopted at the satellite separately for the common messages (CMs) and for the private messages (PMs), which are both implemented based on the estimated LMS channels suffering from the Shadowed-Rician fading. Then, closed-form expressions are derived for the ergodic rates for decoding the CM, and for decoding the PM at the intended user respectively, and more importantly, we also derive the ergodic secrecy rate against eavesdropping. Finally, numerical results are provided to validate the correctness of the proposed analysis models, as well as to show some interesting comparisons.Comment: 5 pages, 3 figures, 1 tabl

    Outage analysis of cognitive hybrid satellite-terrestrial networks with hardware impairments and multi-primary users

    Get PDF
    This paper investigates the effects of practical hardware impairments (HIs) on a cognitive hybrid satellite-terrestrial networks (CHSTN) with multiple primary users (PUs). The widely-employed Shadowed-Rician fading distribution is adopted to model the satellite-terrestrial channel. CHSTN can provide comprehensive wireless coverage as well as enhanced spectrum resource usage by considering the requirements of both spectrum efficiency and reliability. Specifically, we derive the closed-form expression of the outage probability (OP) for the considered system in the presence of interference power constraints imposed by multiple adjacent terrestrial PUs. To gain further insights at high signal-to-noise ratios (SNRs), the asymptotic expression for the OP is also derived. Numerical results confirm the correctness and effectiveness of our performance analysis

    Downlink Analysis and Evaluation of Multi-Beam LEO Satellite Communication in Shadowed Rician Channels

    Full text link
    The extension of wide area wireless connectivity to low-earth orbit (LEO) satellite communication systems demands a fresh look at the effects of in-orbit base stations, sky-to-ground propagation, and cell planning. A multi-beam LEO satellite delivers widespread coverage by forming multiple spot beams that tessellate cells over a given region on the surface of the Earth. In doing so, overlapping spot beams introduce interference when delivering downlink concurrently in the same area using the same frequency spectrum. To permit forecasting of communication system performance, we characterize desired and interference signal powers, along with SNR, INR, SIR, and SINR, under the measurement-backed Shadowed Rician (SR) sky-to-ground channel model. We introduce a minor approximation to the fading order of SR channels that greatly simplifies the PDF and CDF of these quantities and facilitates statistical analyses of LEO satellite systems such as probability of outage. We conclude this paper with an evaluation of multi-beam LEO satellite communication in SR channels of varying intensity fitted from existing measurements. Our numerical results highlight the effects satellite elevation angle has on SNR, INR, and SINR, which brings attention to the variability in system state and potential performance as a satellite traverses across the sky along its orbit
    corecore