101,094 research outputs found

    Application of Quasigroups in Cryptography and Data Communications

    Get PDF
    In the past decade, quasigroup theory has proven to be a fruitfull field for production of new cryptographic primitives and error-corecting codes. Examples include several finalists in the flagship competitions for new symmetric ciphers, as well as several assimetric proposals and cryptcodes. Since the importance of cryptography and coding theory for secure and reliable data communication can only grow within our modern society, investigating further the power of quasigroups in these fields is highly promising research direction. Our team of researchers has defined several research objectives, which can be devided into four main groups: 1. Design of new cryptosystems or their building blocks based on quasigroups - we plan to make a classification of small quasigroups based on new criteria, as well as to identify new optimal 8–bit S-boxes produced by small quasigroups. The results will be used to design new stream and block ciphers. 2. Cryptanalysis of some cryptosystems based on quasigroups - we will modify and improve the existing automated tools for differential cryptanalysis, so that they can be used for prove the resistance to differential cryptanalysis of several existing ciphers based on quasigroups. This will increase the confidence in these ciphers. 3. Codes based on quasigroups - we will designs new and improve the existing error correcting codes based on combinatorial structures and quasigroups. 4. Algebraic curves over finite fields with their cryptographic applications - using some known and new tools, we will investigate the rational points on algebraic curves over finite fields, and explore the possibilities of applying the results in cryptography

    On quantum non-signalling boxes

    Full text link
    A classical non-signalling (or causal) box is an operation on classical bipartite input with classical bipartite output such that no signal can be sent from a party to the other through the use of the box. The quantum counterpart of such boxes, i.e. completely positive trace-preserving maps on bipartite states, though studied in literature, have been investigated less intensively than classical boxes. We present here some results and remarks about such maps. In particular, we analyze: the relations among properties as causality, non-locality and entanglement; the connection between causal and entanglement breaking maps; the characterization of causal maps in terms of the classification of states with fixed reductions. We also provide new proofs of the fact that every non-product unitary transformation is not causal, as well as for the equivalence of the so-called semicausality and semilocalizability properties.Comment: 18 pages, 7 figures, revtex

    Object Detection in Videos with Tubelet Proposal Networks

    Full text link
    Object detection in videos has drawn increasing attention recently with the introduction of the large-scale ImageNet VID dataset. Different from object detection in static images, temporal information in videos is vital for object detection. To fully utilize temporal information, state-of-the-art methods are based on spatiotemporal tubelets, which are essentially sequences of associated bounding boxes across time. However, the existing methods have major limitations in generating tubelets in terms of quality and efficiency. Motion-based methods are able to obtain dense tubelets efficiently, but the lengths are generally only several frames, which is not optimal for incorporating long-term temporal information. Appearance-based methods, usually involving generic object tracking, could generate long tubelets, but are usually computationally expensive. In this work, we propose a framework for object detection in videos, which consists of a novel tubelet proposal network to efficiently generate spatiotemporal proposals, and a Long Short-term Memory (LSTM) network that incorporates temporal information from tubelet proposals for achieving high object detection accuracy in videos. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of the proposed framework for object detection in videos.Comment: CVPR 201

    Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection

    Full text link
    Over the past decade, deep neural networks (DNNs) have demonstrated remarkable performance in a variety of applications. As we try to solve more advanced problems, increasing demands for computing and power resources has become inevitable. Spiking neural networks (SNNs) have attracted widespread interest as the third-generation of neural networks due to their event-driven and low-powered nature. SNNs, however, are difficult to train, mainly owing to their complex dynamics of neurons and non-differentiable spike operations. Furthermore, their applications have been limited to relatively simple tasks such as image classification. In this study, we investigate the performance degradation of SNNs in a more challenging regression problem (i.e., object detection). Through our in-depth analysis, we introduce two novel methods: channel-wise normalization and signed neuron with imbalanced threshold, both of which provide fast and accurate information transmission for deep SNNs. Consequently, we present a first spiked-based object detection model, called Spiking-YOLO. Our experiments show that Spiking-YOLO achieves remarkable results that are comparable (up to 98%) to those of Tiny YOLO on non-trivial datasets, PASCAL VOC and MS COCO. Furthermore, Spiking-YOLO on a neuromorphic chip consumes approximately 280 times less energy than Tiny YOLO and converges 2.3 to 4 times faster than previous SNN conversion methods.Comment: Accepted to AAAI 202
    • …
    corecore