11,122 research outputs found

    An extension of Yuan's Lemma and its applications in optimization

    Full text link
    We prove an extension of Yuan's Lemma to more than two matrices, as long as the set of matrices has rank at most 2. This is used to generalize the main result of [A. Baccari and A. Trad. On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints. SIAM J. Opt., 15(2):394--408, 2005], where the classical necessary second-order optimality condition is proved under the assumption that the set of Lagrange multipliers is a bounded line segment. We prove the result under the more general assumption that the hessian of the Lagrangian evaluated at the vertices of the Lagrange multiplier set is a matrix set with at most rank 2. We apply the results to prove the classical second-order optimality condition to problems with quadratic constraints and without constant rank of the jacobian matrix

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    Optimal control of the sweeping process over polyhedral controlled sets

    Get PDF
    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1,2W^{1,2}-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples

    Optimal control of elliptic equations with positive measures

    Get PDF
    Optimal control problems without control costs in general do not possess solutions due to the lack of coercivity. However, unilateral constraints together with the assumption of existence of strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-to-observation mapping is not continuous (e.g., for Neumann boundary control in three dimensions). Combining a conforming discretization of the measure space with a semismooth Newton method allows the numerical solution of the optimal control problem
    • …
    corecore