18 research outputs found

    The Strong Perfect Graph Conjecture: 40 years of Attempts, and its Resolution

    Get PDF
    International audienceThe Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The first of these three approaches yielded the first (and to date only) proof of the SPGC; the other two remain promising to consider in attempting an alternative proof. This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1) we devote a signicant part of it to the 'primitive graphs and structural faults' paradigm which led to the Strong Perfect Graph Theorem (SPGT); (2) we briefly present the other "direct" attempts, that is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the "indirect" approaches whose aim was to get more information about the properties and structure of perfect graphs, without a direct impact on the SPGC. Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as possible. Of course, this implies large overlaps with the recent book on perfect graphs [J.L. Ramirez-Alfonsin and B.A. Reed, eds., Perfect Graphs (Wiley & Sons, 2001).], but it also implies a deeper analysis (with additional results) and another viewpoint on the topic

    Introduction to Mathematical Programming-Based Error-Correction Decoding

    Full text link
    Decoding error-correctiong codes by methods of mathematical optimization, most importantly linear programming, has become an important alternative approach to both algebraic and iterative decoding methods since its introduction by Feldman et al. At first celebrated mainly for its analytical powers, real-world applications of LP decoding are now within reach thanks to most recent research. This document gives an elaborate introduction into both mathematical optimization and coding theory as well as a review of the contributions by which these two areas have found common ground.Comment: LaTeX sources maintained here: https://github.com/supermihi/lpdintr

    Polütoopide laienditega seotud ülesanded

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneLineaarplaneerimine on optimeerimine matemaatilise mudeliga, mille sihi¬funktsioon ja kitsendused on esitatud lineaarsete seostega. Paljusid igapäeva elu väljakutseid võime vaadelda lineaarplaneerimise vormis, näiteks miinimumhinna või maksimaalse tulu leidmist. Sisepunkti meetod saavutab häid tulemusi nii teoorias kui ka praktikas ning lahendite leidmise tööaeg ja lineaarsete seoste arv on polünomiaalses seoses. Sellest tulenevalt eksponentsiaalne arv lineaarseid seoseid väljendub ka ekponentsiaalses tööajas. Iga vajalik lineaarne seos vastab ühele polütoobi P tahule, mis omakorda tähistab lahendite hulka. Üks võimalus tööaja vähendamiseks on suurendada dimensiooni, mille tulemusel väheneks ka polütoobi tahkude arv. Saadud polütoopi Q nimeta¬takse polütoobi P laiendiks kõrgemas dimensioonis ning polütoobi Q minimaalset tahkude arvu nimetakakse polütoobi P laiendi keerukuseks, sellisel juhul optimaalsete lahendite hulk ei muutu. Tekib küsimus, millisel juhul on võimalik leida laiend Q, mille korral tahkude arv on polünomiaalne. Mittedeterministlik suhtluskeerukus mängib olulist rolli tõestamaks polütoopide laiendite keerukuse alampiiri. Polütoobile P vastava suhtluskeerukuse leidmine ning alamtõkke tõestamine väistavad võimalused leida laiend Q, mis ei oleks eksponentsiaalne. Käesolevas töös keskendume me juhuslikele Boole'i funktsioonidele f, mille tihedusfunktsioon on p = p(n). Me pakume välja vähima ülemtõkke ning suurima alamtõkke mittedeterministliku suhtluskeerukuse jaoks. Lisaks uurime me ka pedigree polütoobi graafi. Pedigree polütoop on rändkaupmehe ülesande polütoobi laiend, millel on kombinatoorne struktuur. Polütoobi graafi võib vaadelda kui abstraktset graafi ning see annab informatsiooni polütoobi omaduste kohta.The linear programming (LP for short) is a method for finding an optimal solution, such as minimum cost or maximum profit for a linear function subject to linear constraints. But having an exponential number of inequalities gives the exponential running time in solving linear program. A polytope, let's say P, represents the space of the feasible solution. One idea for decreasing the running time of the problem, is lifting the polytope P tho the higher dimensions with the goal of decresing the number of inequalities. The polytope in higher dimension, let's say Q, is the extension of the original polytope P and the minimum number of facets that Q can have is the extension complexity of P. Then the optimal solution of the problem over Q, gives the optimal solution over P. The natural question may raise is when is it possible to have an extension with a polynomial number of inequalities? Nondeterministic communication complexity is a powerful tool for proving lower bound on the extension complexity of a polytopes. Finding a suitable communication complexity problem corresponded to a polytope P and proving a linear lower bound for the nondeterministic communication complexity of it, will rule out all the attempts for finding sub-exponential size extension Q of P. In this thesis, we focus on the random Boolean functions f, with density p = p(n). We give tight upper and lower bounds for the nondeterministic communication complexity and parameters related to it. Also, we study the rank of fooling set matrix which is an important lower bound for nondeterministic communication complexity. Finally, we investigate the graph of the pedigree polytope. Pedigree polytope is an extension of TSP (traveling salesman problem; the most extensively studied problem in combinatorial optimization) polytopes with a nice combinatorial structure. The graph of a polytope can be regarded as an abstract graph and it reveals meaningful information about the properties of the polytope

    Propriétés géométriques du nombre chromatique : polyèdres, structures et algorithmes

    Get PDF
    Computing the chromatic number and finding an optimal coloring of a perfect graph can be done efficiently, whereas it is an NP-hard problem in general. Furthermore, testing perfection can be carried- out in polynomial-time. Perfect graphs are characterized by a minimal structure of their sta- ble set polytope: the non-trivial facets are defined by clique-inequalities only. Conversely, does a similar facet-structure for the stable set polytope imply nice combinatorial and algorithmic properties of the graph ? A graph is h-perfect if its stable set polytope is completely de- scribed by non-negativity, clique and odd-circuit inequalities. Statements analogous to the results on perfection are far from being understood for h-perfection, and negative results are missing. For ex- ample, testing h-perfection and determining the chromatic number of an h-perfect graph are unsolved. Besides, no upper bound is known on the gap between the chromatic and clique numbers of an h-perfect graph. Our first main result states that the operations of t-minors keep h- perfection (this is a non-trivial extension of a result of Gerards and Shepherd on t-perfect graphs). We show that it also keeps the Integer Decomposition Property of the stable set polytope, and use this to answer a question of Shepherd on 3-colorable h-perfect graphs in the negative. The study of minimally h-imperfect graphs with respect to t-minors may yield a combinatorial co-NP characterization of h-perfection. We review the currently known examples of such graphs, study their stable set polytope and state several conjectures on their structure. On the other hand, we show that the (weighted) chromatic number of certain h-perfect graphs can be obtained efficiently by rounding-up its fractional relaxation. This is related to conjectures of Goldberg and Seymour on edge-colorings. Finally, we introduce a new parameter on the complexity of the matching polytope and use it to give an efficient and elementary al- gorithm for testing h-perfection in line-graphs.Le calcul du nombre chromatique et la détermination d'une colo- ration optimale des sommets d'un graphe sont des problèmes NP- difficiles en général. Ils peuvent cependant être résolus en temps po- lynomial dans les graphes parfaits. Par ailleurs, la perfection d'un graphe peut être décidée efficacement. Les graphes parfaits sont caractérisés par la structure de leur poly- tope des stables : les facettes non-triviales sont définies exclusivement par des inégalités de cliques. Réciproquement, une structure similaire des facettes du polytope des stables détermine-t-elle des propriétés combinatoires et algorithmiques intéressantes? Un graphe est h-parfait si les facettes non-triviales de son polytope des stables sont définies par des inégalités de cliques et de circuits impairs. On ne connaît que peu de résultats analogues au cas des graphes parfaits pour la h-perfection, et on ne sait pas si les problèmes sont NP-difficiles. Par exemple, les complexités algorithmiques de la re- connaissance des graphes h-parfaits et du calcul de leur nombre chro- matique sont toujours ouvertes. Par ailleurs, on ne dispose pas de borne sur la différence entre le nombre chromatique et la taille maxi- mum d'une clique d'un graphe h-parfait. Dans cette thèse, nous montrons tout d'abord que les opérations de t-mineurs conservent la h-perfection (ce qui fournit une extension non triviale d'un résultat de Gerards et Shepherd pour la t-perfection). De plus, nous prouvons qu'elles préservent la propriété de décompo- sition entière du polytope des stables. Nous utilisons ce résultat pour répondre négativement à une question de Shepherd sur les graphes h-parfaits 3-colorables. L'étude des graphes minimalement h-imparfaits (relativement aux t-mineurs) est liée à la recherche d'une caractérisation co-NP com- binatoire de la h-perfection. Nous faisons l'inventaire des exemples connus de tels graphes, donnons une description de leur polytope des stables et énonçons plusieurs conjectures à leur propos. D'autre part, nous montrons que le nombre chromatique (pondéré) de certains graphes h-parfaits peut être obtenu efficacement en ar- rondissant sa relaxation fractionnaire à l'entier supérieur. Ce résultat implique notamment un nouveau cas d'une conjecture de Goldberg et Seymour sur la coloration d'arêtes. Enfin, nous présentons un nouveau paramètre de graphe associé aux facettes du polytope des couplages et l'utilisons pour donner un algorithme simple et efficace de reconnaissance des graphes h- parfaits dans la classe des graphes adjoints

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    On the Chvátal-rank of facets for the set covering polyhedron of circular matrices

    No full text
    We study minor related row family inequalities for the set covering polyhedron of circular matrices. We address the issue of generating these inequalities via the Chvátal-Gomory procedure and establish a general upper bound for their Chvátal-rank. Moreover, we provide a construction to obtain facets with arbitrarily large coefficients and examples of facets having Chvátal-rank strictly larger than one.Fil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Luis Miguel. Limos; FranciaFil: Kerivin, Hervé. Limos; FranciaFil: Wagler, Annegrete. Limos; FranciaJoint EURO/ALIO International Conference 2018 on Applied Combinatorial Optimization (EURO/ALIO 2018)BolognaItaliaAssociation of European Operational Research SocietiesAssociation of Latin-Iberoamerican Operational Research Societie
    corecore