273 research outputs found

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Hardness of Finding Independent Sets in 2-Colorable Hypergraphs and of Satisfiable CSPs

    Full text link
    This work revisits the PCP Verifiers used in the works of Hastad [Has01], Guruswami et al.[GHS02], Holmerin[Hol02] and Guruswami[Gur00] for satisfiable Max-E3-SAT and Max-Ek-Set-Splitting, and independent set in 2-colorable 4-uniform hypergraphs. We provide simpler and more efficient PCP Verifiers to prove the following improved hardness results: Assuming that NP\not\subseteq DTIME(N^{O(loglog N)}), There is no polynomial time algorithm that, given an n-vertex 2-colorable 4-uniform hypergraph, finds an independent set of n/(log n)^c vertices, for some constant c > 0. There is no polynomial time algorithm that satisfies 7/8 + 1/(log n)^c fraction of the clauses of a satisfiable Max-E3-SAT instance of size n, for some constant c > 0. For any fixed k >= 4, there is no polynomial time algorithm that finds a partition splitting (1 - 2^{-k+1}) + 1/(log n)^c fraction of the k-sets of a satisfiable Max-Ek-Set-Splitting instance of size n, for some constant c > 0. Our hardness factor for independent set in 2-colorable 4-uniform hypergraphs is an exponential improvement over the previous results of Guruswami et al.[GHS02] and Holmerin[Hol02]. Similarly, our inapproximability of (log n)^{-c} beyond the random assignment threshold for Max-E3-SAT and Max-Ek-Set-Splitting is an exponential improvement over the previous bounds proved in [Has01], [Hol02] and [Gur00]. The PCP Verifiers used in our results avoid the use of a variable bias parameter used in previous works, which leads to the improved hardness thresholds in addition to simplifying the analysis substantially. Apart from standard techniques from Fourier Analysis, for the first mentioned result we use a mixing estimate of Markov Chains based on uniform reverse hypercontractivity over general product spaces from the work of Mossel et al.[MOS13].Comment: 23 Page

    Sharp Concentration of Hitting Size for Random Set Systems

    Full text link
    Consider the random set system of {1,2,...,n}, where each subset in the power set is chosen independently with probability p. A set H is said to be a hitting set if it intersects each chosen set. The second moment method is used to exhibit the sharp concentration of the minimal size of H for a variety of values of p.Comment: 11 page

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201
    • …
    corecore