2,654 research outputs found

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    A proof of the stability of extremal graphs, Simonovits' stability from Szemer\'edi's regularity

    Get PDF
    The following sharpening of Tur\'an's theorem is proved. Let Tn,pT_{n,p} denote the complete pp--partite graph of order nn having the maximum number of edges. If GG is an nn-vertex Kp+1K_{p+1}-free graph with e(Tn,p)−te(T_{n,p})-t edges then there exists an (at most) pp-chromatic subgraph H0H_0 such that e(H0)≥e(G)−te(H_0)\geq e(G)-t. Using this result we present a concise, contemporary proof (i.e., one applying Szemer\'edi's regularity lemma) for the classical stability result of Simonovits.Comment: 4 pages plus reference

    Decomposition of multiple packings with subquadratic union complexity

    Get PDF
    Suppose kk is a positive integer and X\mathcal{X} is a kk-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most kk sets. Suppose there is a function f(n)=o(n2)f(n)=o(n^2) with the property that any nn members of X\mathcal{X} determine at most f(n)f(n) holes, which means that the complement of their union has at most f(n)f(n) bounded connected components. We use tools from extremal graph theory and the topological Helly theorem to prove that X\mathcal{X} can be decomposed into at most pp (11-fold) packings, where pp is a constant depending only on kk and ff.Comment: Small generalization of the main result, improvements in the proofs, minor correction
    • …
    corecore