13,517 research outputs found

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page

    On the chromatic number of random Cayley graphs

    Full text link
    Let G be an abelian group of cardinality N, where (N,6) = 1, and let A be a random subset of G. Form a graph Gamma_A on vertex set G by joining x to y if and only if x + y is in A. Then, almost surely as N tends to infinity, the chromatic number chi(Gamma_A) is at most (1 + o(1))N/2 log_2 N. This is asymptotically sharp when G = Z/NZ, N prime. Presented at the conference in honour of Bela Bollobas on his 70th birthday, Cambridge August 2013.Comment: 26 pages, revised following referee's repor

    On-line list colouring of random graphs

    Get PDF
    In this paper, the on-line list colouring of binomial random graphs G(n,p) is studied. We show that the on-line choice number of G(n,p) is asymptotically almost surely asymptotic to the chromatic number of G(n,p), provided that the average degree d=p(n-1) tends to infinity faster than (log log n)^1/3(log n)^2n^(2/3). For sparser graphs, we are slightly less successful; we show that if d>(log n)^(2+epsilon) for some epsilon>0, then the on-line choice number is larger than the chromatic number by at most a multiplicative factor of C, where C in [2,4], depending on the range of d. Also, for d=O(1), the on-line choice number is by at most a multiplicative constant factor larger than the chromatic number

    On the chromatic number of random geometric graphs

    Get PDF
    Given independent random points X_1,...,X_n\in\eR^d with common probability distribution ν\nu, and a positive distance r=r(n)>0r=r(n)>0, we construct a random geometric graph GnG_n with vertex set {1,...,n}\{1,...,n\} where distinct ii and jj are adjacent when \norm{X_i-X_j}\leq r. Here \norm{.} may be any norm on \eR^d, and ν\nu may be any probability distribution on \eR^d with a bounded density function. We consider the chromatic number χ(Gn)\chi(G_n) of GnG_n and its relation to the clique number ω(Gn)\omega(G_n) as nn \to \infty. Both McDiarmid and Penrose considered the range of rr when r(lnnn)1/dr \ll (\frac{\ln n}{n})^{1/d} and the range when r(lnnn)1/dr \gg (\frac{\ln n}{n})^{1/d}, and their results showed a dramatic difference between these two cases. Here we sharpen and extend the earlier results, and in particular we consider the `phase change' range when r(tlnnn)1/dr \sim (\frac{t\ln n}{n})^{1/d} with t>0t>0 a fixed constant. Both McDiarmid and Penrose asked for the behaviour of the chromatic number in this range. We determine constants c(t)c(t) such that χ(Gn)nrdc(t)\frac{\chi(G_n)}{nr^d}\to c(t) almost surely. Further, we find a "sharp threshold" (except for less interesting choices of the norm when the unit ball tiles dd-space): there is a constant t0>0t_0>0 such that if tt0t \leq t_0 then χ(Gn)ω(Gn)\frac{\chi(G_n)}{\omega(G_n)} tends to 1 almost surely, but if t>t0t > t_0 then χ(Gn)ω(Gn)\frac{\chi(G_n)}{\omega(G_n)} tends to a limit >1>1 almost surely.Comment: 56 pages, to appear in Combinatorica. Some typos correcte

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice
    corecore