20,922 research outputs found

    Twisted particle filters

    Full text link
    We investigate sampling laws for particle algorithms and the influence of these laws on the efficiency of particle approximations of marginal likelihoods in hidden Markov models. Among a broad class of candidates we characterize the essentially unique family of particle system transition kernels which is optimal with respect to an asymptotic-in-time variance growth rate criterion. The sampling structure of the algorithm defined by these optimal transitions turns out to be only subtly different from standard algorithms and yet the fluctuation properties of the estimates it provides can be dramatically different. The structure of the optimal transition suggests a new class of algorithms, which we term "twisted" particle filters and which we validate with asymptotic analysis of a more traditional nature, in the regime where the number of particles tends to infinity.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1167 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Selection of proposal distributions for generalized importance sampling estimators

    Get PDF
    The standard importance sampling (IS) estimator, generally does not work well in examples involving simultaneous inference on several targets as the importance weights can take arbitrarily large values making the estimator highly unstable. In such situations, alternative generalized IS estimators involving samples from multiple proposal distributions are preferred. Just like the standard IS, the success of these multiple IS estimators crucially depends on the choice of the proposal distributions. The selection of these proposal distributions is the focus of this article. We propose three methods based on (i) a geometric space filling coverage criterion, (ii) a minimax variance approach, and (iii) a maximum entropy approach. The first two methods are applicable to any multi-proposal IS estimator, whereas the third approach is described in the context of Doss's (2010) two-stage IS estimator. For the first method we propose a suitable measure of coverage based on the symmetric Kullback-Leibler divergence, while the second and third approaches use estimates of asymptotic variances of Doss's (2010) IS estimator and Geyer's (1994) reverse logistic estimator, respectively. Thus, we provide consistent spectral variance estimators for these asymptotic variances. The proposed methods for selecting proposal densities are illustrated using various detailed examples

    A sticky HDP-HMM with application to speaker diarization

    Get PDF
    We consider the problem of speaker diarization, the problem of segmenting an audio recording of a meeting into temporal segments corresponding to individual speakers. The problem is rendered particularly difficult by the fact that we are not allowed to assume knowledge of the number of people participating in the meeting. To address this problem, we take a Bayesian nonparametric approach to speaker diarization that builds on the hierarchical Dirichlet process hidden Markov model (HDP-HMM) of Teh et al. [J. Amer. Statist. Assoc. 101 (2006) 1566--1581]. Although the basic HDP-HMM tends to over-segment the audio data---creating redundant states and rapidly switching among them---we describe an augmented HDP-HMM that provides effective control over the switching rate. We also show that this augmentation makes it possible to treat emission distributions nonparametrically. To scale the resulting architecture to realistic diarization problems, we develop a sampling algorithm that employs a truncated approximation of the Dirichlet process to jointly resample the full state sequence, greatly improving mixing rates. Working with a benchmark NIST data set, we show that our Bayesian nonparametric architecture yields state-of-the-art speaker diarization results.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS395 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore