3,459 research outputs found

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    Structure and age-dependent development of the turkey liver: a comparative study of a highly selected meat-type and a wild-type turkey line

    Get PDF
    In this study the macroscopic and microscopic structure of the liver of a fast growing, meat-type turkey line (British United turkeys BUT Big 6, n = 25) and a wild-type turkey line (Wild Canadian turkey, n = 48) were compared at the age of 4, 8, 12, 16, and 20 wk. Because the growth plates of long bones were still detectable in the 20-week-old wild-type turkeys, indicating immaturity, a group of 8 wild-type turkeys at the age of 24 wk was included in the original scope of the study. Over the term of the study, the body and liver weights of birds from the meat-type turkey line increased at a faster rate than those of the wild-type turkey line. However, the relative liver weight of the meat-type turkeys declined (from 2.7 to 0.9%) to a greater extent than that of the wild-type turkeys (from 2.8 to 1.9%), suggesting a mismatch in development between muscle weights and liver weights of the meat-type turkeys. Signs of high levels of fat storage in the liver were detected in both lines but were greater in the wild-type turkey line, suggesting a better feed conversion by the extreme-genotype birds i.e., meat-type birds. For the first time, this study presents morphologic data on the structure and arrangement of the lymphatic tissue within the healthy turkey liver, describing two different types of lymphatic aggregations within the liver parenchyma, i.e., aggregations with and without fibrous capsules. Despite differences during development, both adult meat-type and adult wild-type turkeys had similar numbers of lymphatic aggregations

    Analyzing laser-plasma interferograms with a Continuous Wavelet Transform Ridge Extraction technique: the method

    Get PDF
    Laser-plasma interferograms are currently analyzed by extracting the phase-shift map with FFT techniques (K.A.Nugent, Applied Optics {\bf 18}, 3101 (1985)). This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail in producing accurate phase-shifts maps when dealing with low-quality images. In this paper we will present a novel procedure for the phase-shift map computation which makes an extensive use of the Ridge Extraction in the Continuous Wavelet Transform (CWT) framework. The CWT tool is {\it flexible} because of the wide adaptability of the analyzing basis and it can be very {\it accurate} because of the intrinsic noise reduction in the Ridge Extraction. A comparative analysis of the accuracy performances of the new tool and the FFT-based one shows that the CWT-based tool phase maps are considerably less noisy and it can better resolve local inhomogeneties

    Time-frequency characterization of a sound propagation channel as an educational tool

    Full text link
    This paper discusses the use of sound waves to illustrate multipath radio propagation concepts. Specifically, a procedure is presented to measure the time-varying frequency response of the channel. This helps demonstrate how a propagation channel can be characterized in time and frequency, and provides visualizations of the concepts of coherence time and coherence bandwidth. The measurements are very simple to carry out, and the required equipment is easily available. The proposed method can be useful for wireless or mobile communication courses

    Robust Stability Under Mixed Time Varying, Time Invariant and Parametric Uncertainty

    Get PDF
    Robustness analysis is considered for systems with structured uncertainty involving a combination of linear time-invariant and linear time-varying perturbations, and parametric uncertainty. A necessary and sufficient condition for robust stability in terms of the structured singular value μ is obtained, based on a finite augmentation of the original problem. The augmentation corresponds to considering the system at a fixed number of frequencies. Sufficient conditions based on scaled small-gain are also considered and characterized

    Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    Full text link
    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.Comment: 15 pages, 10 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Improved periodic spectral analysis with application to diesel vibration data

    Get PDF
    The purpose of this work is to begin the development of a comprehensive time/frequency spectral analysis approach that can be applied to complex signals associated with real world systems, such as rotating machinery. Rotating machinery operating at nominally constant speed comprise a large class of important real world systems that have received relatively little attention in terms of stochastic characterizations of any greater sophistication than those associated with wide sense stationary processes. In this work, a periodic-time/frequency characterization procedure is introduced in the context of vibration analysis associated with a diesel engine operating at nominally constant speed. This application highlights a number of difficulties, such as the need for accurate period estimation, accommodation of noninteger periods in relation to digital processing, and identification and separation of tonal components from the signature in order to arrive at a more parsimonious characterization. A theorem relating to the limiting influence of these difficulties is presented. These difficulties are addressed using advanced signal processing tools, such as a recently developed tone identification procedure and extended Kalman filtering, which to the authors\u27 knowledge have not been considered to date in such a setting. Results include a simple correction algorithm for noninteger periods, excellent separation of tonal components whose frequencies are slowly varying, and subsequently a modest improvement in the spectral characterization of the remainder of the process. These results have some significance in relation to diesel engine vibration, since they unambiguously identify tonal vibration components, in addition to a random structure which appears to include random excitation of resonances
    • …
    corecore