110 research outputs found

    A Stochastic Resource-Sharing Network for Electric Vehicle Charging

    Full text link
    We consider a distribution grid used to charge electric vehicles such that voltage drops stay bounded. We model this as a class of resource-sharing networks, known as bandwidth-sharing networks in the communication network literature. We focus on resource-sharing networks that are driven by a class of greedy control rules that can be implemented in a decentralized fashion. For a large number of such control rules, we can characterize the performance of the system by a fluid approximation. This leads to a set of dynamic equations that take into account the stochastic behavior of EVs. We show that the invariant point of these equations is unique and can be computed by solving a specific ACOPF problem, which admits an exact convex relaxation. We illustrate our findings with a case study using the SCE 47-bus network and several special cases that allow for explicit computations.Comment: 13 pages, 8 figure

    Performance analysis of queueing networks via robust optimization

    Get PDF
    Performance analysis of queueing networks is one of the most challenging areas of queueing theory. Barring very specialized models such as product-form type queueing networks, there exist very few results that provide provable nonasymptotic upper and lower bounds on key performance measures. In this paper we propose a new performance analysis method, which is based on the robust optimization. The basic premise of our approach is as follows: rather than assuming that the stochastic primitives of a queueing model satisfy certain probability laws—such as i.i.d. interarrival and service times distributions—we assume that the underlying primitives are deterministic and satisfy the implications of such probability laws. These implications take the form of simple linear constraints, namely, those motivated by the law of the iterated logarithm (LIL). Using this approach we are able to obtain performance bounds on some key performance measures. Furthermore, these performance bounds imply similar bounds in the underlying stochastic queueing models. We demonstrate our approach on two types of queueing networks: (a) tandem single-class queueing network and (b) multiclass single-server queueing network. In both cases, using the proposed robust optimization approach, we are able to obtain explicit upper bounds on some steady-state performance measures. For example, for the case of TSC system we obtain a bound of the form C(1 – {rho})–1 ln ln((1 – {rho})–1) [C(1-p) superscript -1 ln ln ((1 - p) superscript -1)]on the expected steady-state sojourn time, where C is an explicit constant and {rho} is the bottleneck traffic intensity. This qualitatively agrees with the correct heavy traffic scaling of this performance measure up to the ln ln((1 – {rho})–1) [ln ln((1 - p) superscript -1)] correction factor.National Science Foundation (U.S.) (Grant DMI-0556106)National Science Foundation (U.S.) (Grant CMMI-0726733

    A stochastic resource-sharing network for electric vehicle charging

    Get PDF
    We consider a distribution grid used to charge electric vehicles subject to voltage stability and various other constraints. We model this as a class of resource

    Queueing networks: solutions and applications

    Get PDF
    During the pasttwo decades queueing network models have proven to be a versatile tool for computer system and computer communication system performance evaluation. This chapter provides a survey of th field with a particular emphasis on applications. We start with a brief historical retrospective which also servesto introduce the majr issues and application areas. Formal results for product form queuenig networks are reviewed with particular emphasis on the implications for computer systems modeling. Computation algorithms, sensitivity analysis and optimization techniques are among the topics covered. Many of the important applicationsof queueing networks are not amenableto exact analysis and an (often confusing) array of approximation methods have been developed over the years. A taxonomy of approximation methods is given and used as the basis for for surveing the major approximation methods that have been studied. The application of queueing network to a number of areas is surveyed, including computer system cpacity planning, packet switching networks, parallel processing, database systems and availability modeling.Durante as últimas duas décadas modelos de redes de filas provaram ser uma ferramenta versátil para avaliação de desempenho de sistemas de computação e sistemas de comunicação. Este capítulo faz um apanhado geral da área, com ênfase em aplicações. Começamos com uma breve retrospectiva histórica que serve também para introduzir os pontos mais importantes e as áreas de aplicação. Resultados formais para redes de filas em forma de produto são revisados com ênfase na modelagem de sistemas de computação. Algoritmos de computação, análise de sensibilidade e técnicas de otimização estão entre os tópicos revistos. Muitas dentre importantes aplicações de redes de filas não são tratáveis por análise exata e uma série (frequentemente confusa) de métodos de aproximação tem sido desenvolvida. Uma taxonomia de métodos de aproximação é dada e usada como base para revisão dos mais importantes métodos de aproximação propostos. Uma revisão das aplicações de redes de filas em um número de áreas é feita, incluindo planejamento de capacidade de sistemas de computação, redes de comunicação por chaveamento de pacotes, processamento paralelo, sistemas de bancos de dados e modelagem de confiabilidade

    Inferring Queueing Network Models from High-precision Location Tracking Data

    No full text
    Stochastic performance models are widely used to analyse the performance and reliability of systems that involve the flow and processing of customers. However, traditional methods of constructing a performance model are typically manual, time-consuming, intrusive and labour-intensive. The limited amount and low quality of manually-collected data often lead to an inaccurate picture of customer flows and poor estimates of model parameters. Driven by advances in wireless sensor technologies, recent real-time location systems (RTLSs) enable the automatic, continuous and unintrusive collection of high-precision location tracking data, in both indoor and outdoor environment. This high-quality data provides an ideal basis for the construction of high-fidelity performance models. This thesis presents a four-stage data processing pipeline which takes as input high-precision location tracking data and automatically constructs a queueing network performance model approximating the underlying system. The first two stages transform raw location traces into high-level “event logs” recording when and for how long a customer entity requests service from a server entity. The third stage infers the customer flow structure and extracts samples of time delays involved in the system; including service time, customer interarrival time and customer travelling time. The fourth stage parameterises the service process and customer arrival process of the final output queueing network model. To collect large-enough location traces for the purpose of inference by conducting physical experiments is expensive, labour-intensive and time-consuming. We thus developed LocTrack- JINQS, an open-source simulation library for constructing simulations with location awareness and generating synthetic location tracking data. Finally we examine the effectiveness of the data processing pipeline through four case studies based on both synthetic and real location tracking data. The results show that the methodology performs with moderate success in inferring multi-class queueing networks composed of single-server queues with FIFO, LIFO and priority-based service disciplines; it is also capable of inferring different routing policies, including simple probabilistic routing, class-based routing and shortest-queue routing

    A multiple channel queueing model under an uncertain environment with multiclass arrivals for supplying demands in a cement industry

    Get PDF
    In recent years, cement consumption has increased in most Asian countries, including Malaysia. There are many factors which affect the supply of the increasing order demands in the cement industry, such as traffic congestion, logistics, weather and machine breakdowns. These factors hinder smooth and efficient supply, especially during periods of peak congestion at the main gate of the industry where queues occur as a result of inability to keep to the order deadlines. Basic elements, such as arrival and service rates, that cannot be predetermined must be considered under an uncertain environment. Solution approaches including conventional queueing techniques, scheduling models and simulations were unable to formulate the performance measures of the cement queueing system. Hence, a new procedure of fuzzy subset intervals is designed and embedded in a queuing model with the consideration of arrival and service rates. As a result, a multiple channel queueing model with multiclass arrivals, (M1, M2)/G/C/2Pr, under an uncertain environment is developed. The model is able to estimate the performance measures of arrival rates of bulk products for Class One and bag products for Class Two in the cement manufacturing queueing system. For the (M1, M2)/G/C/2Pr fuzzy queueing model, two defuzzification techniques, namely the Parametric Nonlinear Programming and Robust Ranking are used to convert fuzzy queues into crisp queues. This led to three proposed sub-models, which are sub-model 1, MCFQ-2Pr, sub-model 2, MCCQESR-2Pr and sub-model 3, MCCQ-GSR-2Pr. These models provide optimal crisp values for the performance measures. To estimate the performance of the whole system, an additional step is introduced through the TrMF-UF model utilizing a utility factor based on fuzzy subset intervals and the α-cut approach. Consequently, these models help decision-makers deal with order demands under an uncertain environment for the cement manufacturing industry and address the increasing quantities needed in future
    corecore