246 research outputs found

    The Convergent Generalized Central Paths for Linearly Constrained Convex Programming

    Get PDF
    The convergence of central paths has been a focal point of research on interior point methods. Quite detailed analyses have been made for the linear case. However, when it comes to the convex case, even if the constraints remain linear, the problem is unsettled. In [Math. Program., 103 (2005), pp. 63–94], Gilbert, Gonzaga, and Karas presented some examples in convex optimization, where the central path fails to converge. In this paper, we aim at finding some continuous trajectories which can converge for all linearly constrained convex optimization problems under some mild assumptions. We design and analyze a class of continuous trajectories, which are the solutions of certain ordinary differential equation (ODE) systems for solving linearly constrained smooth convex programming. The solutions of these ODE systems are named generalized central paths. By only assuming the existence of a finite optimal solution, we are able to show that, starting from any interior feasible point, (i) all of the generalized central paths are convergent, and (ii) the limit point(s) are indeed the optimal solution(s) of the original optimization problem. Furthermore, we illustrate that for the key example of Gilbert, Gonzaga, and Karas, our generalized central paths converge to the optimal solutions

    Interior proximal methods and central paths for convex second-order cone programming

    Get PDF
    We make a unified analysis of interior proximal methods of solving convex second-order cone programming problems. These methods use a proximal distance with respect to second-order cones which can be produced with an appropriate closed proper univariate function in three ways. Under some mild conditions, the sequence generated is bounded with each limit point being a solution, and global rates of convergence estimates are obtained in terms of objective values. A class of regularized proximal distances is also constructed which can guarantee the global convergence of the sequence to an optimal solution. These results are illustrated with some examples. In addition, we also study the central paths associated with these distance-like functions, and for the linear SOCP we discuss their relations with the sequence generated by the interior proximal methods. From this, we obtain improved convergence results for the sequence for the interior proximal methods using a proximal distance continuous at the boundary of second-order cones

    Long step homogeneous interior point algorithm for the p* nonlinear complementarity problems

    Get PDF
    A P*-Nonlinear Complementarity Problem as a generalization of the P*-Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set

    Analysis of some interior point continuous trajectories for convex programming

    Get PDF
    In this paper, we analyse three interior point continuous trajectories for convex programming with general linear constraints. The three continuous trajectories are derived from the primal–dual path-following method, the primal–dual affine scaling method and the central path, respectively. Theoretical properties of the three interior point continuous trajectories are fully studied. The optimality and convergence of all three interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for all three interior point continuous trajectories does not require the strict complementarity or the analyticity of the objective function. These results are new in the literature

    Long-Step Homogeneous Interior-Point Method for P*-Nonlinear Complementarity Problem

    Get PDF
    A P*-Nonlinear Complementarity Problem as a generalization of the P*Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set
    • …
    corecore