789,956 research outputs found

    Deformation theory of representations of prop(erad)s

    Get PDF
    We study the deformation theory of morphisms of properads and props thereby extending to a non-linear framework Quillen's deformation theory for commutative rings. The associated chain complex is endowed with a Lie algebra up to homotopy structure. Its Maurer-Cartan elements correspond to deformed structures, which allows us to give a geometric interpretation of these results. To do so, we endow the category of prop(erad)s with a model category structure. We provide a complete study of models for prop(erad)s. A new effective method to make minimal models explicit, that extends Koszul duality theory, is introduced and the associated notion is called homotopy Koszul. As a corollary, we obtain the (co)homology theories of (al)gebras over a prop(erad) and of homotopy (al)gebras as well. Their underlying chain complex is endowed with a canonical Lie algebra up to homotopy structure in general and a Lie algebra structure only in the Koszul case. In particular, we explicit the deformation complex of morphisms from the properad of associative bialgebras. For any minimal model of this properad, the boundary map of this chain complex is shown to be the one defined by Gerstenhaber and Schack. As a corollary, this paper provides a complete proof of the existence of a Lie algebra up to homotopy structure on the Gerstenhaber-Schack bicomplex associated to the deformations of associative bialgebras.Comment: Version 4 : Statement about the properad of (non-commutative) Frobenius bialgebras fixed in Section 4. [82 pages

    A general framework for homotopic descent and codescent

    Get PDF
    In this paper we elaborate a general homotopy-theoretic framework in which to study problems of descent and completion and of their duals, codescent and cocompletion. Our approach to homotopic (co)descent and to derived (co)completion can be viewed as ∞\infty-category-theoretic, as our framework is constructed in the universe of simplicially enriched categories, which are a model for (∞,1)(\infty, 1)-categories. We provide general criteria, reminiscent of Mandell's theorem on E∞E_{\infty}-algebra models of pp-complete spaces, under which homotopic (co)descent is satisfied. Furthermore, we construct general descent and codescent spectral sequences, which we interpret in terms of derived (co)completion and homotopic (co)descent. We show that a number of very well-known spectral sequences, such as the unstable and stable Adams spectral sequences, the Adams-Novikov spectral sequence and the descent spectral sequence of a map, are examples of general (co)descent spectral sequences. There is also a close relationship between the Lichtenbaum-Quillen conjecture and homotopic descent along the Dwyer-Friedlander map from algebraic K-theory to \'etale K-theory. Moreover, there are intriguing analogies between derived cocompletion (respectively, completion) and homotopy left (respectively, right) Kan extensions and their associated assembly (respectively, coassembly) maps.Comment: Discussion of completeness has been refined; statement of the theorem on assembly has been corrected; numerous small additions and minor correction

    Structure and semantics

    Get PDF
    Algebraic theories describe mathematical structures that are defined in terms of operations and equations, and are extremely important throughout mathematics. Many generalisations of the classical notion of an algebraic theory have sprung up for use in different mathematical contexts; some examples include Lawvere theories, monads, PROPs and operads. The first central notion of this thesis is a common generalisation of these, which we call a proto-theory. The purpose of an algebraic theory is to describe its models, which are structures in which each of the abstract operations of the theory is given a concrete interpretation such that the equations of the theory hold. The process of going from a theory to its models is called semantics, and is encapsulated in a semantics functor. In order to define a model of a theory in a given category, it is necessary to have some structure that relates the arities of the operations in the theory with the objects of the category. This leads to the second central notion of this thesis, that of an interpretation of arities, or aritation for short. We show that any aritation gives rise to a semantics functor from the appropriate category of proto-theories, and that this functor has a left adjoint called the structure functor, giving rise to a structure{semantics adjunction. Furthermore, we show that the usual semantics for many existing notions of algebraic theory arises in this way by choosing an appropriate aritation. Another aim of this thesis is to find a convenient category of monads in the following sense. Every right adjoint into a category gives rise to a monad on that category, and in fact some functors that are not right adjoints do too, namely their codensity monads. This is the structure part of the structure{semantics adjunction for monads. However, the fact that not every functor has a codensity monad means that the structure functor is not defined on the category of all functors into the base category, but only on a full subcategory of it. This deficiency is solved when passing to general proto-theories with a canonical choice of aritation whose structure{semantics adjunction restricts to the usual one for monads. However, this comes at a cost: the semantics functor for general proto-theories is not full and faithful, unlike the one for monads. The condition that a semantics functor be full and faithful can be thought of as a kind of completeness theorem | it says that no information is lost when passing from a theory to its models. It is therefore desirable to retain this property of the semantics of monads if possible. The goal then, is to find a notion of algebraic theory that generalises monads for which the semantics functor is full and faithful with a left adjoint; equivalently the semantics functor should exhibit the category of theories as a re ective subcategory of the category of all functors into the base category. We achieve this (for well-behaved base categories) with a special kind of proto-theory enriched in topological spaces, which we call a complete topological proto-theory. We also pursue an analogy between the theory of proto-theories and that of groups. Under this analogy, monads correspond to finite groups, and complete topological proto-theories correspond to profinite groups. We give several characterisations of complete topological proto-theories in terms of monads, mirroring characterisations of profinite groups in terms of finite groups

    Deterministic Pomsets

    Get PDF
    This paper is about partially ordered multisets (pomsets for short). We investigate a particular class of pomsets that we call deterministic, properly including all partially ordered sets, which satisfies a number of interesting properties: among other things, it forms a distributive lattice under pomset prefix (hence prefix closed sets of deterministic pomsets are prime algebraic), and it constitutes a reflective subcategory of the category of all pomsets. For the deterministic pomsets we develop an algebra with a sound and (ω-)complete equational theory. The operators in the algebra are concatenation and join, the latter being a variation on the more usual disjoint union of pomsets with the special property that it yields the least upper bound with respect to pomset prefix.\ud \ud This theory is then extended in several ways. We capture refinement of pomsets by incorporating homomorphisms between models as objects in the algebra and homomorphism application as a new operator. This in turn allows to formulate distributed termination and sequential composition of pomsets, where the latter is different from concatenation in that it is right-distributive over union. To contrast this we also formulate a notion of global termination. Each variation is captured equationally by a sound and ω-complete theory.\u
    • …
    corecore