1,018 research outputs found

    Adaptive Modulation in Multi-user Cognitive Radio Networks over Fading Channels

    Full text link
    In this paper, the performance of adaptive modulation in multi-user cognitive radio networks over fading channels is analyzed. Multi-user diversity is considered for opportunistic user selection among multiple secondary users. The analysis is obtained for Nakagami-mm fading channels. Both adaptive continuous rate and adaptive discrete rate schemes are analysed in opportunistic spectrum access and spectrum sharing. Numerical results are obtained and depicted to quantify the effects of multi-user fading environments on adaptive modulation operating in cognitive radio networks

    Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

    Full text link
    In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-mm fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users' (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method

    Cooperation and Underlay Mode Selection in Cognitive Radio Network

    Full text link
    In this research, we proposes a new method for cooperation and underlay mode selection in cognitive radio networks. We characterize the maximum achievable throughput of our proposed method of hybrid spectrum sharing. Hybrid spectrum sharing is assumed where the Secondary User (SU) can access the Primary User (PU) channel in two modes, underlay mode or cooperative mode with admission control. In addition to access the channel in the overlay mode, secondary user is allowed to occupy the channel currently occupied by the primary user but with small transmission power. Adding the underlay access modes attains more opportunities to the secondary user to transmit data. It is proposed that the secondary user can only exploits the underlay access when the channel of the primary user direct link is good or predicted to be in non-outage state. Therefore, the secondary user could switch between underlay spectrum sharing and cooperation with the primary user. Hybrid access is regulated through monitoring the state of the primary link. By observing the simulation results, the proposed model attains noticeable improvement in the system performance in terms of maximum secondary user throughput than the conventional cooperation and non-cooperation schemes
    • …
    corecore