4,863 research outputs found

    Spatial Performance Analysis and Design Principles for Wireless Peer Discovery

    Full text link
    In wireless peer-to-peer networks that serve various proximity-based applications, peer discovery is the key to identifying other peers with which a peer can communicate and an understanding of its performance is fundamental to the design of an efficient discovery operation. This paper analyzes the performance of wireless peer discovery through comprehensively considering the wireless channel, spatial distribution of peers, and discovery operation parameters. The average numbers of successfully discovered peers are expressed in closed forms for two widely used channel models, i.e., the interference limited Nakagami-m fading model and the Rayleigh fading model with nonzero noise, when peers are spatially distributed according to a homogeneous Poisson point process. These insightful expressions lead to the design principles for the key operation parameters including the transmission probability, required amount of wireless resources, level of modulation and coding scheme (MCS), and transmit power. Furthermore, the impact of shadowing on the spatial performance and suggested design principles is evaluated using mathematical analysis and simulations.Comment: 12 pages (double columns), 10 figures, 1 table, to appear in the IEEE Transactions on Wireless Communication

    Uplink capacity of a variable density cellular system with multicell processing

    Get PDF
    In this work we investigate the information theoretic capacity of the uplink of a cellular system. Assuming centralised processing for all base stations, we consider a power-law path loss model along with variable cell size (variable density of Base Stations) and we formulate an average path-loss approximation. Considering a realistic Rician flat fading environment, the analytical result for the per-cell capacity is derived for a large number of users distributed over each cell. We extend this general approach to model the uplink of sectorized cellular system. To this end, we assume that the user terminals are served by perfectly directional receiver antennas, dividing the cell coverage area into perfectly non-interfering sectors. We show how the capacity is increased (due to degrees of freedom gain) in comparison to the single receiving antenna system and we investigate the asymptotic behaviour when the number of sectors grows large. We further extend the analysis to find the capacity when the multiple antennas used for each Base Station are omnidirectional and uncorrelated (power gain on top of degrees of freedom gain). We validate the numerical solutions with Monte Carlo simulations for random fading realizations and we interpret the results for the real-world systems

    A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    Full text link
    This paper presents a novel framework for modeling the uplink intercell interference (ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.Comment: IEEE Transactions on Wireless Communications, 2013. arXiv admin note: substantial text overlap with arXiv:1206.229
    • 

    corecore