160 research outputs found

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design

    A Study of Communication Networks through the Lens of Reduction

    Get PDF
    A central goal of information theory is to characterize the capacity regions of communication networks. Due to the difficulty of the general problem, research is primarily focused on families of problems defined by various classifiers. These classifiers include the channel transition function (i.e., noisy, deterministic, network coding), demand type (i.e., single-source, 2-unicast), network topology (i.e. acyclic network coding, index coding). To date, the families of networks that are fully solved remain limited. Moreover, results derived for one specific family often do not extend easily to other families of problems. Our work shifts from the traditional focus on solving example networks to one that builds connections between problem solutions so that we can say where and when solving a problem in one domain would also solve a corresponding problem in another domain. Central to our approach is a technique called "reduction", in which we connect the solutions and results of communication problems. We say that problem A reduces to problem B when A can be solved by first transforming it to B and then applying a solution for B. We focus on two notions of reduction: reduction in code design and reduction in capacity region. Our central results demonstrate reductions with respect to a variety of classifiers. We show that finding multiple multicast network capacity regions reduces to finding multiple unicast network capacity regions both when capacity is defined as the maximal rate over all possible codes and when capacity is defined as the optimal rate over linear codes. As a corollary to this result, we show that the same capacity reduction holds for when network types are limited to either network coding networks or index coding networks. In several instances, we show that a reduction in code design extends to a reduction in capacity region if and only if the edge removal conjecture holds. Here, the edge removal conjecture states that removing an edge of negligible capacity from a network does not change its capacity region. One of the key challenges in network coding research is how to handle networks containing cycles. As a result, many papers on network coding restrict attention to acyclic networks and some results derived for acyclic networks do not extend to networks containing cycles. We consider a streaming model for network communication where information is streamed to its destination under a constraint on maximal delay at the decoder. Restricting our attention to this scenario enables us to prove a code reduction from network coding to index coding in both acyclic and cyclic networks. Since index coding networks are acyclic, a consequence of this reduction is that under the streaming model, there is no fundamental difference between acyclic and cyclic networks.</p

    Coding for Security and Reliability in Distributed Systems

    Get PDF
    This dissertation studies the use of coding techniques to improve the reliability and security of distributed systems. The first three parts focus on distributed storage systems, and study schemes that encode a message into n shares, assigned to n nodes, such that any n - r nodes can decode the message (reliability) and any colluding z nodes cannot infer any information about the message (security). The objective is to optimize the computational, implementation, communication and access complexity of the schemes during the process of encoding, decoding and repair. These are the key metrics of the schemes so that when they are applied in practical distributed storage systems, the systems are not only reliable and secure, but also fast and cost-effective. Schemes with highly efficient computation and implementation are studied in Part I. For the practical high rate case of r ≤ 3 and z ≤ 3, we construct schemes that require only r + z XORs to encode and z XORs to decode each message bit, based on practical erasure codes including the B, EVENODD and STAR codes. This encoding and decoding complexity is shown to be optimal. For general r and z, we design schemes over a special ring from Cauchy matrices and Vandermonde matrices. Both schemes can be efficiently encoded and decoded due to the structure of the ring. We also discuss methods to shorten the proposed schemes. Part II studies schemes that are efficient in terms of communication and access complexity. We derive a lower bound on the decoding bandwidth, and design schemes achieving the optimal decoding bandwidth and access. We then design schemes that achieve the optimal bandwidth and access not only for decoding, but also for repair. Furthermore, we present a family of Shamir's schemes with asymptotically optimal decoding bandwidth. Part III studies the problem of secure repair, i.e., reconstructing the share of a (failed) node without leaking any information about the message. We present generic secure repair protocols that can securely repair any linear schemes. We derive a lower bound on the secure repair bandwidth and show that the proposed protocols are essentially optimal in terms of bandwidth. In the final part of the dissertation, we study the use of coding techniques to improve the reliability and security of network communication. Specifically, in Part IV we draw connections between several important problems in network coding. We present reductions that map an arbitrary multiple-unicast network coding instance to a unicast secure network coding instance in which at most one link is eavesdropped, or a unicast network error correction instance in which at most one link is erroneous, such that a rate tuple is achievable in the multiple-unicast network coding instance if and only if a corresponding rate is achievable in the unicast secure network coding instance, or in the unicast network error correction instance. Conversely, we show that an arbitrary unicast secure network coding instance in which at most one link is eavesdropped can be reduced back to a multiple-unicast network coding instance. Additionally, we show that the capacity of a unicast network error correction instance in general is not (exactly) achievable. We derive upper bounds on the secrecy capacity for the secure network coding problem, based on cut-sets and the connectivity of links. Finally, we study optimal coding schemes for the network error correction problem, in the setting that the network and adversary parameters are not known a priori.</p

    Advanced Signaling Support for IP-based Networks

    Get PDF
    This work develops a set of advanced signaling concepts for IP-based networks. It proposes a design for secure and authentic signaling and provides QoS signaling support for mobile users. Furthermore, this work develops methods which allow for scalable QoS signaling by realizing QoS-based group communication mechanisms and through aggregation of resource reservations

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • …
    corecore