1,928 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On the Vector Broadcast Channel with Alternating CSIT: A Topological Perspective

    Full text link
    In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point of view, accounting for such topological aspects has remained largely unexplored, despite strong indications that such aspects can crucially affect transceiver and feedback design, as well as the overall performance. The work here takes a step in exploring this interplay between topology, feedback and performance. This is done for the two user broadcast channel with random fading, in the presence of a simple two-state topological setting of statistically strong vs. weaker links, and in the presence of a practical ternary feedback setting of alternating channel state information at the transmitter (alternating CSIT) where for each channel realization, this CSIT can be perfect, delayed, or not available. In this setting, the work derives generalized degrees-of-freedom bounds and exact expressions, that capture performance as a function of feedback statistics and topology statistics. The results are based on novel topological signal management (TSM) schemes that account for topology in order to fully utilize feedback. This is achieved for different classes of feedback mechanisms of practical importance, from which we identify specific feedback mechanisms that are best suited for different topologies. This approach offers further insight on how to split the effort --- of channel learning and feeding back CSIT --- for the strong versus for the weaker link. Further intuition is provided on the possible gains from topological spatio-temporal diversity, where topology changes in time and across users.Comment: Shorter version will be presented at ISIT 201
    • …
    corecore