265 research outputs found

    A Verifiable Fully Homomorphic Encryption Scheme for Cloud Computing Security

    Full text link
    Performing smart computations in a context of cloud computing and big data is highly appreciated today. Fully homomorphic encryption (FHE) is a smart category of encryption schemes that allows working with the data in its encrypted form. It permits us to preserve confidentiality of our sensible data and to benefit from cloud computing powers. Currently, it has been demonstrated by many existing schemes that the theory is feasible but the efficiency needs to be dramatically improved in order to make it usable for real applications. One subtle difficulty is how to efficiently handle the noise. This paper aims to introduce an efficient and verifiable FHE based on a new mathematic structure that is noise free

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    On the IND-CCA1 Security of FHE Schemes

    Get PDF
    Fully homomorphic encryption (FHE) is a powerful tool in cryptography that allows one to perform arbitrary computations on encrypted material without having to decrypt it first. There are numerous FHE schemes, all of which are expanded from somewhat homomorphic encryption (SHE) schemes, and some of which are considered viable in practice. However, while these FHE schemes are semantically (IND-CPA) secure, the question of their IND-CCA1 security is much less studied, and we therefore provide an overview of the IND-CCA1 security of all acknowledged FHE schemes in this paper. To give this overview, we grouped the SHE schemes into broad categories based on their similarities and underlying hardness problems. For each category, we show that the SHE schemes are susceptible to either known adaptive key recovery attacks, a natural extension of known attacks, or our proposed attacks. Finally, we discuss the known techniques to achieve IND-CCA1-secure FHE and SHE schemes. We concluded that none of the proposed schemes were IND-CCA1-secure and that the known general constructions all had their shortcomings.publishedVersio

    Practical Homomorphic Encryption Over the Integers for Secure Computation in the Cloud

    Get PDF
    We present novel homomorphic encryption schemes for integer arithmetic, intended primarily for use in secure single-party computation in the cloud. These schemes are capable of securely computing arbitrary degree polynomials homomorphically. In practice, ciphertext size and running times limit the polynomial degree, but this appears sufficient for most practical applications. We present four schemes, with increasing levels of security, but increasing computational overhead. Two of the schemes provide strong security for high-entropy data. The remaining two schemes provide strong security regardless of this assumption. These four algorithms form the first two levels of a hierarchy of schemes which require linearly decreasing entropy. We have evaluated these four algorithms by computing low-degree polynomials. The timings of these computations are extremely favourable by comparison with even the best of existing methods, and dramatically out-perform running times of directly comparable schemes by a factor of up to 1000, and considerably more than that for fully homomorphic schemes, used in the same context. The results clearly demonstrate the practical applicability of our schemes

    Encriptação parcialmente homomórfica CCA1-segura

    Get PDF
    Orientadores: Ricardo Dahab, Diego de Freitas AranhaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta tese nosso tema de pesquisa é a encriptação homomórfica, com foco em uma solução prática e segura para encriptação parcialmente homomórfica (somewhat homomorphic encryption - SHE), considerando o modelo de segurança conhecido como ataque de texto encriptado escolhido (chosen ciphertext attack - CCA). Este modelo pode ser subdividido em duas categorias, a saber, CCA1 e CCA2, sendo CCA2 o mais forte. Sabe-se que é impossível construir métodos de encriptação homomórfica que sejam CCA2-seguros. Por outro lado, é possível obter segurança CCA1, mas apenas um esquema foi proposto até hoje na literatura; assim, seria interessante haver outras construções oferecendo este tipo de segurança. Resumimos os principais resultados desta tese de doutorado em duas contribuições. A primeira é mostrar que a família NTRU de esquemas SHE é vulnerável a ataques de recuperação de chave privada, e portanto não são CCA1-seguros. A segunda é a utilização de computação verificável para obter esquemas SHE que são CCA1-seguros e que podem ser usados para avaliar polinômios multivariáveis quadráticos. Atualmente, métodos de encriptação homomórfica são construídos usando como substrato dois problemas de difícil solução: o MDC aproximado (approximate GCD problem - AGCD) e o problema de aprendizado com erros (learning with errors - LWE). O problema AGCD leva, em geral, a construções mais simples mas com desempenho inferior, enquanto que os esquemas baseados no problema LWE correspondem ao estado da arte nesta área de pesquisa. Recentemente, Cheon e Stehlé demonstraram que ambos problemas estão relacionados, e é uma questão interessante investigar se esquemas baseados no problema AGCD podem ser tão eficientes quanto esquemas baseados no problema LWE. Nós respondemos afirmativamente a esta questão para um cenário específico: estendemos o esquema de computação verificável proposto por Fiore, Gennaro e Pastro, de forma que use a suposição de que o problema AGCD é difícil, juntamente com o esquema DGHV adaptado para uso do Teorema Chinês dos Restos (Chinese remainder theorem - CRT) de forma a evitar ataques de recuperação de chave privadaAbstract: In this thesis we study homomorphic encryption with focus on practical and secure somewhat homomorphic encryption (SHE), under the chosen ciphertext attack (CCA) security model. This model is classified into two different main categories: CCA1 and CCA2, with CCA2 being the strongest. It is known that it is impossible to construct CCA2-secure homomorphic encryption schemes. On the other hand, CCA1-security is possible, but only one scheme is known to achieve it. It would thus be interesting to have other CCA1-secure constructions. The main results of this thesis are summarized in two contributions. The first is to show that the NTRU-family of SHE schemes is vulnerable to key recovery attacks, hence not CCA1-secure. The second is the utilization of verifiable computation to obtain a CCA1-secure SHE scheme that can be used to evaluate quadratic multivariate polynomials. Homomorphic encryption schemes are usually constructed under the assumption that two distinct problems are hard, namely the Approximate GCD (AGCD) Problem and the Learning with Errors (LWE) Problem. The AGCD problem leads, in general, to simpler constructions, but with worse performance, wheras LWE-based schemes correspond to the state-of-the-art in this research area. Recently, Cheon and Stehlé proved that both problems are related, and thus it is an interesting problem to investigate if AGCD-based SHE schemes can be made as efficient as their LWE counterparts. We answer this question positively for a specific scenario, extending the verifiable computation scheme proposed by Fiore, Gennaro and Pastro to work under the AGCD assumption, and using it together with the Chinese Remainder Theorem (CRT)-version of the DGHV scheme, in order to avoid key recovery attacksDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação143484/2011-7CNPQCAPE

    Enabling Secure Database as a Service using Fully Homomorphic Encryption: Challenges and Opportunities

    Full text link
    The database community, at least for the last decade, has been grappling with querying encrypted data, which would enable secure database as a service solutions. A recent breakthrough in the cryptographic community (in 2009) related to fully homomorphic encryption (FHE) showed that arbitrary computation on encrypted data is possible. Successful adoption of FHE for query processing is, however, still a distant dream, and numerous challenges have to be addressed. One challenge is how to perform algebraic query processing of encrypted data, where we produce encrypted intermediate results and operations on encrypted data can be composed. In this paper, we describe our solution for algebraic query processing of encrypted data, and also outline several other challenges that need to be addressed, while also describing the lessons that can be learnt from a decade of work by the database community in querying encrypted data

    Practical homomorphic encryption over the integers for secure computation in the cloud

    Get PDF
    We present novel homomorphic encryption schemes for integer arithmetic, intended primarily for use in secure single-party computation in the cloud. These schemes are capable of securely computing arbitrary degree polynomials homomorphically. In practice, ciphertext size and running times limit the polynomial degree, but this appears sufficient for most practical applications. We present four schemes, with increasing levels of security, but increasing computational overhead. Two of the schemes provide strong security for high-entropy data. The remaining two schemes provide strong security regardless of this assumption. These four algorithms form the first two levels of a hierarchy of schemes, and we also present the general cases of each scheme. We further elaborate how a fully homomorphic system can be constructed from one of our general cases. In addition, we present a variant based upon Chinese Remainder Theorem secret sharing. We detail extensive evaluation of the first four algorithms of our hierarchy by computing low-degree polynomials. The timings of these computations are extremely favourable by comparison with even the best of existing methods and dramatically outperform many well-publicised schemes. The results clearly demonstrate the practical applicability of our schemes
    corecore