8,164 research outputs found

    What can topology tell us about the neural code?

    Full text link
    Neuroscience is undergoing a period of rapid experimental progress and expansion. New mathematical tools, previously unknown in the neuroscience community, are now being used to tackle fundamental questions and analyze emerging data sets. Consistent with this trend, the last decade has seen an uptick in the use of topological ideas and methods in neuroscience. In this talk I will survey recent applications of topology in neuroscience, and explain why topology is an especially natural tool for understanding neural codes. Note: This is a write-up of my talk for the Current Events Bulletin, held at the 2016 Joint Math Meetings in Seattle, WA.Comment: 16 pages, 9 figure

    Blind Identification of Invertible Graph Filters with Multiple Sparse Inputs

    Full text link
    This paper deals with problem of blind identification of a graph filter and its sparse input signal, thus broadening the scope of classical blind deconvolution of temporal and spatial signals to irregular graph domains. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the filter enables an efficient convex formulation, without relying on matrix lifting that can hinder applicability to large graphs. On top of scaling, it is argued that (non-cyclic) permutation ambiguities may arise with some particular graphs. Deterministic sufficient conditions under which the proposed convex relaxation can exactly recover the unknowns are stated, along with those guaranteeing identifiability under the Bernoulli-Gaussian model for the inputs. Numerical tests with synthetic and real-world networks illustrate the merits of the proposed algorithm, as well as the benefits of leveraging multiple signals to aid the (blind) localization of sources of diffusion

    Deep Recurrent Neural Networks for Time Series Prediction

    Full text link
    Ability of deep networks to extract high level features and of recurrent networks to perform time-series inference have been studied. In view of universality of one hidden layer network at approximating functions under weak constraints, the benefit of multiple layers is to enlarge the space of dynamical systems approximated or, given the space, reduce the number of units required for a certain error. Traditionally shallow networks with manually engineered features are used, back-propagation extent is limited to one and attempt to choose a large number of hidden units to satisfy the Markov condition is made. In case of Markov models, it has been shown that many systems need to be modeled as higher order. In the present work, we present deep recurrent networks with longer backpropagation through time extent as a solution to modeling systems that are high order and to predicting ahead. We study epileptic seizure suppression electro-stimulator. Extraction of manually engineered complex features and prediction employing them has not allowed small low-power implementations as, to avoid possibility of surgery, extraction of any features that may be required has to be included. In this solution, a recurrent neural network performs both feature extraction and prediction. We prove analytically that adding hidden layers or increasing backpropagation extent increases the rate of decrease of approximation error. A Dynamic Programming (DP) training procedure employing matrix operations is derived. DP and use of matrix operations makes the procedure efficient particularly when using data-parallel computing. The simulation studies show the geometry of the parameter space, that the network learns the temporal structure, that parameters converge while model output displays same dynamic behavior as the system and greater than .99 Average Detection Rate on all real seizure data tried.Comment: Preliminary, submitted to IEEE TNNL

    A Unified Perspective of Evolutionary Game Dynamics Using Generalized Growth Transforms

    Full text link
    In this paper, we show that different types of evolutionary game dynamics are, in principle, special cases of a dynamical system model based on our previously reported framework of generalized growth transforms. The framework shows that different dynamics arise as a result of minimizing a population energy such that the population as a whole evolves to reach the most stable state. By introducing a population dependent time-constant in the generalized growth transform model, the proposed framework can be used to explain a vast repertoire of evolutionary dynamics, including some novel forms of game dynamics with non-linear payoffs

    Training Multi-layer Spiking Neural Networks using NormAD based Spatio-Temporal Error Backpropagation

    Full text link
    Spiking neural networks (SNNs) have garnered a great amount of interest for supervised and unsupervised learning applications. This paper deals with the problem of training multi-layer feedforward SNNs. The non-linear integrate-and-fire dynamics employed by spiking neurons make it difficult to train SNNs to generate desired spike trains in response to a given input. To tackle this, first the problem of training a multi-layer SNN is formulated as an optimization problem such that its objective function is based on the deviation in membrane potential rather than the spike arrival instants. Then, an optimization method named Normalized Approximate Descent (NormAD), hand-crafted for such non-convex optimization problems, is employed to derive the iterative synaptic weight update rule. Next, it is reformulated to efficiently train multi-layer SNNs, and is shown to be effectively performing spatio-temporal error backpropagation. The learning rule is validated by training 22-layer SNNs to solve a spike based formulation of the XOR problem as well as training 33-layer SNNs for generic spike based training problems. Thus, the new algorithm is a key step towards building deep spiking neural networks capable of efficient event-triggered learning.Comment: 19 pages, 10 figure

    Addressing Class Imbalance in Classification Problems of Noisy Signals by using Fourier Transform Surrogates

    Full text link
    Randomizing the Fourier-transform (FT) phases of temporal-spatial data generates surrogates that approximate examples from the data-generating distribution. We propose such FT surrogates as a novel tool to augment and analyze training of neural networks and explore the approach in the example of sleep-stage classification. By computing FT surrogates of raw EEG, EOG, and EMG signals of under-represented sleep stages, we balanced the CAPSLPDB sleep database. We then trained and tested a convolutional neural network for sleep stage classification, and found that our surrogate-based augmentation improved the mean F1-score by 7%. As another application of FT surrogates, we formulated an approach to compute saliency maps for individual sleep epochs. The visualization is based on the response of inferred class probabilities under replacement of short data segments by partial surrogates. To quantify how well the distributions of the surrogates and the original data match, we evaluated a trained classifier on surrogates of correctly classified examples, and summarized these conditional predictions in a confusion matrix. We show how such conditional confusion matrices can qualitatively explain the performance of surrogates in class balancing. The FT-surrogate augmentation approach may improve classification on noisy signals if carefully adapted to the data distribution under analysis.Comment: 7 pages, 7 figure

    Enhancing Geometric Deep Learning via Graph Filter Deconvolution

    Full text link
    In this paper, we incorporate a graph filter deconvolution step into the classical geometric convolutional neural network pipeline. More precisely, under the assumption that the graph domain plays a role in the generation of the observed graph signals, we pre-process every signal by passing it through a sparse deconvolution operation governed by a pre-specified filter bank. This deconvolution operation is formulated as a group-sparse recovery problem, and convex relaxations that can be solved efficiently are put forth. The deconvolved signals are then fed into the geometric convolutional neural network, yielding better classification performance than their unprocessed counterparts. Numerical experiments showcase the effectiveness of the deconvolution step on classification tasks on both synthetic and real-world settings.Comment: 5 pages, 8 figures, to appear in the proceedings of the 2018 6th IEEE Global Conference on Signal and Information Processing, November 26-29, 2018, Anaheim, California, US

    Geometric Generalization Based Zero-Shot Learning Dataset Infinite World: Simple Yet Powerful

    Full text link
    Raven's Progressive Matrices are one of the widely used tests in evaluating the human test taker's fluid intelligence. Analogously, this paper introduces geometric generalization based zero-shot learning tests to measure the rapid learning ability and the internal consistency of deep generative models. Our empirical research analysis on state-of-the-art generative models discern their ability to generalize concepts across classes. In the process, we introduce Infinite World, an evaluable, scalable, multi-modal, light-weight dataset and Zero-Shot Intelligence Metric ZSI. The proposed tests condenses human-level spatial and numerical reasoning tasks to its simplistic geometric forms. The dataset is scalable to a theoretical limit of infinity, in numerical features of the generated geometric figures, image size and in quantity. We systematically analyze state-of-the-art model's internal consistency, identify their bottlenecks and propose a pro-active optimization method for few-shot and zero-shot learning

    Discovery and visualization of structural biomarkers from MRI using transport-based morphometry

    Full text link
    Disease in the brain is often associated with subtle, spatially diffuse, or complex tissue changes that may lie beneath the level of gross visual inspection, even on magnetic resonance imaging (MRI). Unfortunately, current computer-assisted approaches that examine pre-specified features, whether anatomically-defined (i.e. thalamic volume, cortical thickness) or based on pixelwise comparison (i.e. deformation-based methods), are prone to missing a vast array of physical changes that are not well-encapsulated by these metrics. In this paper, we have developed a technique for automated pattern analysis that can fully determine the relationship between brain structure and observable phenotype without requiring any a priori features. Our technique, called transport-based morphometry (TBM), is an image transformation that maps brain images losslessly to a domain where they become much more separable. The new approach is validated on structural brain images of healthy older adult subjects where even linear models for discrimination, regression, and blind source separation enable TBM to independently discover the characteristic changes of aging and highlight potential mechanisms by which aerobic fitness may mediate brain health later in life. TBM is a generative approach that can provide visualization of physically meaningful shifts in tissue distribution through inverse transformation. The proposed framework is a powerful technique that can potentially elucidate genotype-structural-behavioral associations in myriad diseases

    Non-convex non-local flows for saliency detection

    Full text link
    We propose and numerically solve a new variational model for automatic saliency detection in digital images. Using a non-local framework we consider a family of edge preserving functions combined with a new quadratic saliency detection term. Such term defines a constrained bilateral obstacle problem for image classification driven by p-Laplacian operators, including the so-called hyper-Laplacian case (0 < p < 1). The related non-convex non-local reactive flows are then considered and applied for glioblastoma segmentation in magnetic resonance fluid-attenuated inversion recovery (MRI-Flair) images. A fast convolutional kernel based approximated solution is computed. The numerical experiments show how the non-convexity related to the hyperLaplacian operators provides monotonically better results in terms of the standard metrics
    • …
    corecore