37,397 research outputs found

    Solvable Groups, Free Divisors and Nonisolated Matrix Singularities I: Towers of Free Divisors

    Get PDF
    We introduce a method for obtaining new classes of free divisors from representations VV of connected linear algebraic groups GG where dim(G)=dim(V)\dim(G)=\dim(V), with VV having an open orbit. We give sufficient conditions that the complement of this open orbit, the "exceptional orbit variety", is a free divisor (or a slightly weaker free* divisor) for "block representations" of both solvable groups and extensions of reductive groups by them. These are representations for which the matrix defined from a basis of associated "representation vector fields" on VV has block triangular form, with blocks satisfying certain nonsingularity conditions. For towers of Lie groups and representations this yields a tower of free divisors, successively obtained by adjoining varieties of singular matrices. This applies to solvable groups which give classical Cholesky-type factorization, and a modified form of it, on spaces of m×mm \times m symmetric, skew-symmetric or general matrices. For skew-symmetric matrices, it further extends to representations of nonlinear infinite dimensional solvable Lie algebras.Comment: 50 pages. Many changes from v1 in response to a thorough review, mostly concentrated in sections 2, 3, and 4. To appear in Annales de l'Institut Fourie

    On fixed-point, Krylov, and 2×22\times 2 block preconditioners for nonsymmetric problems

    Full text link
    The solution of matrices with 2×22\times 2 block structure arises in numerous areas of computational mathematics, such as PDE discretizations based on mixed-finite element methods, constrained optimization problems, or the implicit or steady state treatment of any system of PDEs with multiple dependent variables. Often, these systems are solved iteratively using Krylov methods and some form of block preconditioner. Under the assumption that one diagonal block is inverted exactly, this paper proves a direct equivalence between convergence of 2×22\times2 block preconditioned Krylov or fixed-point iterations to a given tolerance, with convergence of the underlying preconditioned Schur-complement problem. In particular, results indicate that an effective Schur-complement preconditioner is a necessary and sufficient condition for rapid convergence of 2×22\times 2 block-preconditioned GMRES, for arbitrary relative-residual stopping tolerances. A number of corollaries and related results give new insight into block preconditioning, such as the fact that approximate block-LDU or symmetric block-triangular preconditioners offer minimal reduction in iteration over block-triangular preconditioners, despite the additional computational cost. Theoretical results are verified numerically on a nonsymmetric steady linearized Navier-Stokes discretization, which also demonstrate that theory based on the assumption of an exact inverse of one diagonal block extends well to the more practical setting of inexact inverses.Comment: Accepted to SIMA

    Symmetric indefinite triangular factorization revealing the rank profile matrix

    Get PDF
    We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization PTAP=LDLT\mathbf{P}^T\mathbf{A}\mathbf{P} = \mathbf{L}\mathbf{D}\mathbf{L}^T where P\mathbf{P} is a permutation matrix, L\mathbf{L} is lower triangular with a unit diagonal and D\mathbf{D} is symmetric block diagonal with 1×11{\times}1 and 2×22{\times}2 antidiagonal blocks. The novel algorithm requires O(n2rω2)O(n^2r^{\omega-2}) arithmetic operations. Furthermore, experimental results demonstrate that our algorithm can even be slightly more than twice as fast as the state of the art unsymmetric Gaussian elimination in most cases, that is it achieves approximately the same computational speed. By adapting the pivoting strategy developed in the unsymmetric case, we show how to recover the rank profile matrix from the permutation matrix and the support of the block-diagonal matrix. There is an obstruction in characteristic 22 for revealing the rank profile matrix which requires to relax the shape of the block diagonal by allowing the 2-dimensional blocks to have a non-zero bottom-right coefficient. This relaxed decomposition can then be transformed into a standard PLDLTPT\mathbf{P}\mathbf{L}\mathbf{D}\mathbf{L}^T\mathbf{P}^T decomposition at a negligible cost

    Functions preserving nonnegativity of matrices

    Full text link
    The main goal of this work is to determine which entire functions preserve nonnegativity of matrices of a fixed order nn -- i.e., to characterize entire functions ff with the property that f(A)f(A) is entrywise nonnegative for every entrywise nonnegative matrix AA of size n×nn\times n. Towards this goal, we present a complete characterization of functions preserving nonnegativity of (block) upper-triangular matrices and those preserving nonnegativity of circulant matrices. We also derive necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of symmetric matrices. We also show that some of these latter conditions characterize the even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to appear in SIAM J. Matrix Anal. App

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure
    corecore