1,313 research outputs found

    On the Bitrate Adaptation of Shared Media Experience Services

    Get PDF
    In Shared Media Experience Services (SMESs), a group of people is interested in streaming consumption in a synchronised way, like in the case of cloud gaming, live streaming, and interactive social applications. However, group synchronisation comes at the expense of other Quality of Experience (QoE) factors due to both the dynamic and diverse network conditions that each group member experiences. Someone might wonder if there is a way to keep a group synchronised while maintaining the highest possible QoE for each one of its members. In this work, at first we create a Quality Assessment Framework capable of evaluating different SMESs improvement approaches with respect to traditional metrics like media bitrate quality, playback disruption, and end user desynchronisation. Secondly, we focus on the bitrate adaptation for improving the QoE of SMESs, as an incrementally deployable end user triggered approach, and we formulate the problem in the context of Adaptive Real Time Dynamic Programming (ARTDP). Finally, we develop and apply a simple QoE aware bitrate adaptation mechanism that we compare against youtube live-streaming traces to find that it improves the youtube performance by more than 30%

    FedRR: a federated resource reservation algorithm for multimedia services

    Get PDF
    The Internet is rapidly evolving towards a multimedia service delivery platform. However, existing Internet-based content delivery approaches have several disadvantages, such as the lack of Quality of Service (QoS) guarantees. Future Internet research has presented several promising ideas to solve the issues related to the current Internet, such as federations across network domains and end-to-end QoS reservations. This paper presents an architecture for the delivery of multimedia content across the Internet, based on these novel principles. It facilitates the collaboration between the stakeholders involved in the content delivery process, allowing them to set up loosely-coupled federations. More specifically, the Federated Resource Reservation (FedRR) algorithm is proposed. It identifies suitable federation partners, selects end-to-end paths between content providers and their customers, and optimally configures intermediary network and infrastructure resources in order to satisfy the requested QoS requirements and minimize delivery costs

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery

    Get PDF
    Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms

    QoE-centric management of multimedia networks through cooperative control loops

    Get PDF
    The Internet has evolved from a service to transport simple text files into a platform for transporting a variety of complex multimedia services. The initial centralized management systems were not designed and are therefore not able to perform efficient management of Quality of Experience (QoE) for these complex services. Deploying an autonomic management system resolves these complexity issues and allows efficient resource allocation based on the service type, end-user requirements and device characteristics. However, existing autonomic management systems only allow limited cooperation between different autonomic elements (AE), which limits their capabilities to provide end-to-end QoE assurance. This research will therefore design cooperative AEs, optimize their organization and provide cooperative allocation algorithms to optimize end-to-end QoE

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    corecore